
REASONING ABOUT SECURE INTEROPERATION
USING SOFT CONSTRAINTS

Stefano Bistarelli1,2, Simon N. Foley3, Barry O’Sullivan3,4

1Istituto di Informatica e Telematica, CNR, Pisa, Italy
stefano.bistarelli@iit.cnr.it

2Dipartimento di Scienze, Universita degli Studi “G. D’Annunzio”, Pescara, Italy
bista@sci.unich.it

3Department of Computer Science, University College Cork, Ireland
{s.foley,b.osullivan}@cs.ucc.ie

4Cork Constraint Computation Centre, University College Cork, Ireland
b.osullivan@4c.ucc.ie

Abstract The security of a network configuration is based not just on the security of its in-
dividual components and their direct interconnections, but also on the potential
for systems to interoperate indirectly across network routes. Such interoperation
has been shown to provide the potential for circuitous paths across a network that
violate security. In this paper we propose a constraint-based framework for rep-
resenting access control configurations of systems. Thesecure reconfiguration
of a system is depicted as a constraint satisfaction problem.

Keywords: Secure interoperation, constraint satisfaction.

1. Introduction

In its most general case, determining the security of a system is undecidable
[Harrison et al., 1976] (the safety problem). This has led to the design of a
wide range of decidable security mechanisms that are based on more restric-
tive forms of security, for example, [Amman and Sandhu, 1992, Bertino et al.,
1998]. These mechanisms decide whether an access by a subject is authorized
according to the rules set out in a security policy. A system is secure (upholds
its security policy) if it is not possible for a subject to gain unauthorized access.

The composition of secure systems is not necessarily secure. A user may
be able to gain unauthorized access to an object by taking a circuitous access
route across individually secure but interoperating systems [Gong and Qian,
1996, Foley, 2000]. Determining security is based not just on the individual



174

system authorization mechanisms but also on how the systems are configured
to interoperate. For example, if Alice is permitted to have access to Bob’s files
on the Administration system, and Clare is permitted access Alice’s files on the
Sales system, then is it safe to support file sharing between these systems? The
extent of system interoperation must be limited if the administration security
policy states that Clare is not permitted access to Bob’s (administration) files.

The computational challenges of secure interoperation for access control
systems is considered in [Gong and Qian, 1994, Gong and Qian, 1996]. In
their research Gong and Qian represent access control as an abstract graph of
system entities (files, users, etc.) with arcs representing (binary) potential for
access. System interoperation is defined as a form of graph composition, and
determining whether an interoperation is secure can be performed in polyno-
mial time. However, given systems whose interoperation is not secure, then
optimally re-configuring the interoperation such that composition is secure is
NP-complete. Finding an optimal re-configuration is desirable in order to min-
imize the extent of the additional access restrictions and maximize desired in-
teroperation: reconfiguring access control to deny all access, while secure, is
overly restrictive.

We are interested in the development of practical tools for modelling and
analyzing complex system configurations. In this paper we describe how con-
straints [Bistarelli et al., 1997, Bistarelli, 2004, Wallace, 1996] provide a prac-
tical and natural approach to modelling and solving the secure interoperation
problem. Constraint solving is an emerging software technology for declara-
tive description and effective solving of large problems. The advantages of ex-
pressing secure interoperation as a constraint satisfaction problem is that there
exists a wide body of existing research results on solving this problem for large
systems of constraints in a fully mechanized manner. Section 2 provides a brief
introduction to soft constraints.

In Section 3 we propose a constraint-based framework for representing ac-
cess control configurations of systems. By building on a semiring of permis-
sions, our framework is sufficiently general to be applied to models such as
[Gong, 1999, Sandhu et al., 1996]. Section 4 defines what it means to securely
reconfigure a system as a constraint satisfaction problem and Section 5 uses
this definition to formulate the meaning of secure interoperation. The advan-
tage of taking the constraint approach is that information about all possible
interoperation vulnerabilities are effectively available during analysis. This
provides the potential for managing tradeoffs between vulnerabilities using
techniques such as [Bistarelli and O’Sullivan, 2003]. Conventional tests for in-
teroperation [Gong and Qian, 1994, Gong and Qian, 1996] are designed to find
just one vulnerability. Section 6 considers a special case of secure interopera-
tion that is not unlike the approach described in [Gong and Qian, 1994, Gong
and Qian, 1996]. In Section 7 a number of concluding remarks are made.



175

2. Soft Constraints

Constraints have been successfully used in the analysis of a wide variety of
problems ranging from network management, for example [Fruehwirth and
Brisset, 1997, Aziz et al., 2004], to complex scheduling such as [Bellone
et al., 1992]. They have also been used to analyze security protocols [Bella
and Bistarelli, 2001, Bella and Bistarelli, 2002, Bella and Bistarelli, 2004],
to represent integrity policy [Bistarelli and Foley, 2003a, Bistarelli and Foley,
2003b], for secure systems interoperation [Bistarelli et al., 2004b, Bistarelli
et al., 2004a] and in the development of practical security administration tools
[Konstantinou et al., 1999]. In [Konstantinou et al., 1999] constraints are used
to help the System Administrator to easily describe network configurations and
relations among servers, firewalls and services for the final users. Constraints
are used to represent, in a declarative manner, the relations among network
objects. This permits the use of local propagation techniques to reconfigure
the network when hardware/software changes occur (particularly in a wireless
environment). Such automatic reconfiguration would not be possible if the
network policy was encoded using conventional shell scripts.

The constraint programming process consists of the generation of require-
ments (constraints) and solution of these requirements, by specialized con-
straint solvers. When the requirements of a problem are expressed as a col-
lection of boolean predicates over variables, we obtain what is called thecrisp
(or classical) Constraint Satisfaction Problem (CSP). In this case the problem
is solved by finding any assignment of the variables that satisfies all the con-
straints.

Sometimes, when a deeper analysis of a problem is required,softconstraints
are used instead [Bistarelli et al., 1997, Bistarelli et al., 2002, Bistarelli, 2004].
Soft constraints associate a qualitative or quantitative value either to the entire
constraint or to each assignment of its variables. More precisely, they are based
on a semiring structureS =̂ 〈A,+,×,0,1〉 and a set of variablesV with do-
mainD. In particular the semiring operation× is used to combine constraints
together, and the+ operator for disjunction, projection and for comparing lev-
els (a partial order≤S is defined overA such thata ≤S b iff a + b = b).

Technically, aconstraintis a function which, given an assignmentη : V →
D of the variables, returns a value of the semiring. SoC = η → A is the set of
all possible constraints that can be built starting fromS, D andV (values inA
are interpreted as levels of preference or importance or cost).

When using soft constraints it is necessary to specify, via suitable com-
bination operators, how the level of preference of a global solution is ob-
tained from the preferences in the constraints. The combined weight of a set
of constraints is computed using the operator⊗ : C × C → C defined as



176

(c1 ⊗ c2)η = c1η×S c2η. Disjunction of constraints⊕ : C × C → C is instead
defined as follows:(c1 ⊕ c2)η = c1η +S c2η

By using the⊕S operator we can easily extend the partial order≤S over
C by definingc1 vS c2 ⇐⇒ c1 ⊕S c2 = c2. In the following, when the
semiring will be clear from the context, we will usev.

Moreover, given a constraintc ∈ C and a variablev ∈ V , theprojectionof c
overV − {v}, writtenc ⇓(V−{v}) is the constraintc′ s.t. c′η =

∑
d∈D cη[v :=

d].

3. Access Configuration

Let ENT represent the domain of all possible entities (subjects, objects,
principals) that are of interest across all systems in a network. Access relation-
ships are defined in terms of the permission that one entity holds for another.
The current access constraints in a system are represented as a soft-constraint
C(X, Y ) over variablesX, Y , where fora, b ∈ ENT thenC(a, b) ∈ PERM
is the access permission that entitya holds for entityb.

Permissions are represented using a semiringS =̂ 〈PERM ,+,×,⊥,>〉
wherePERM represents the set of all possible permissions,+ (union) and
× (intersection) are used to combine permissions.⊥ represents the no-access
permission and> represents full-access permission. In general, an entity with
permissionp ∈ PERM implicitly has permissionp′ ≤ p, where≤ is the
partial order relation on the semiringS. Encoding permissions using a partial
order is common, for example, [Bell and Padula, 1976] is based on a partial or-
der of security classes, Java Security permissions are partially ordered [Gong,
1999] and [Bharadwaj and Baras, 2003] codifies Role and Permission lattices
within a semiring.

Definition 1 Access Configuration.An access configuration of a system
is represented as a constraint on the access permissions between entities from
ENT . 2

Example 1 Given an arbitrary semiringS =̂ 〈PERM ,+,×,⊥,>〉 of per-
missions, an access configuration that denies all access for all entities inX, Y ∈
ENT is defined as:

C⊥(X, Y ) =̂ ⊥

A system that places no access restrictions on entities is specified as the null
constraintC>, whereC>(X, Y ) =̂ > for all X, Y . 4

Example 2 Consider a simple systemS1 with permissions no-access (F)
and full-access (T) that are represented by the Boolean algebra:

SBool =̂ 〈{F,T},∨,∧,F,T〉.



177

Figure 1. An access flow permitted through transitivity (Example 2).

The system has entities:a, b andc with access constraints

CS1(c, b) =̂ F
CS1(b, a) =̂ F

In this constraint network we can evaluateCS1(a, b) = CS1(b, c) = T and,
by transitivity, CS1(a, c) = T. This situation is depicted in Figure 1. Note
that in this figure, and in all others in this paper, solid (light/green) lines repre-
sent permitted flows (T in this case), and dashed (dark/red) lines represent not
permitted flow (F in this case).

In practice, access control need not always be transitive and many interest-
ing and useful requirements can be described by, what are effectively, non-
transitive access configurations [Lee, 1988, Foley, 1992, Foley, 1997, Foley,
2000]. To model non-transitive access flows, prohibitions on transitive access
must be explicitly specified within the system of constraints. For example,
adding the constraintCS1(a, c) =̂ F implies thatCS1(a, c) is evaluated asF
(the greatest lower bound on the weights of all paths that connecta to c). The
class of all access configurations that are based on the boolean semiring of
permissions is equivalent to the set of reflexive policies described in [Foley,
1992, Foley, 1997]. 4

Example 3 A system supports read and write access control, as defined by
the semiringSrw =̂ 〈{2{r,w},∪,∩, {}, {r, w}〉. The system has constraints
(see Figure 2):

CS1
rw

(a, b) =̂ {r,w} CS1
rw

(b, c) =̂ {r} CS1
rw

(a, c) =̂ {r}
CS1

rw
(b, a) =̂ {} CS1

rw
(c, b) =̂ {} CS1

rw
(c, a) =̂ {}



178

Figure 2. The access flows in the system described in Example 3.

4

4. Access Reconfiguration

An existing access configuration may be safely re-configured by further re-
stricting (decreasing permission levels) the existing access relationships. In-
creasing (according to the semiring) permissions between existing system en-
tities is not permitted as it may lead to an entity having access that was previ-
ously denied.

Definition 2 Secure Reconfiguration.We say thatCS′ is a suitable recon-
figuration of access configurationCS if CS′ v CS , where for any assignmentη
of variables to domain values fromENT , thenCS′η ≤ CSη. 2

It follows by definition thatv is a partial order with most restrictive configu-
rationC⊥ and least restrictive configurationC>. We have for any configuration
CS thatC⊥ v CS v C>.

Example 4 ConfigurationCS1
rw

can be securely reconfigured asCS2
rw

(see
Figure 3), where

CS2
rw

(a, b) =̂ {r,w} CS2
rw

(b, c) =̂ {r} CS2
rw

(a, c) =̂ {}
CS2

rw
(b, a) =̂ {} CS2

rw
(c, b) =̂ {} CS2

rw
(c, a) =̂ {}

We haveC⊥ v CS2
rw
v CS1

rw
v C>. 4



179

Figure 3. The secure reconfiguration ofCS1
rw

asCS2
rw

(Example 4).

5. Access Interoperation

A network is composed of a number of different interoperating systems. For
the purposes of this paper we assume that interoperation is represented by en-
tities that are common to the individual systems. For example, a system with
usera and a shared filesystemb, interoperates with any system that has the
same usera or mounts the same file systemb. While a system has control
over its own system it has no jurisdiction over access control on other systems.
Therefore, when a system interoperates with another, we need to ensure that
the interoperation is such that it is not possible for the access rules of the orig-
inal system to be bypassed by taking a circuitous route through the connected
system.

When (securely) composing systemsS1 andS2, the new ‘combined’ sys-
temS3 must represent a secure reconfiguration ofS1 andS2, that is,CS3 v
CS1 andCS3 v CS2. It is clear thatC⊥ is a secure re-configuration as it pro-
hibits all access. However,C⊥ is overly restrictive; we seek the least restrictive
secure re-configuration ofS1 andS2.

Definition 3 Secure Configuration Composition. The (secure) configura-
tion of interoperating systemsS1 andS2 is configured asCS1⊗CS2, where for
any assignmentη of variables to domain values fromENT , then(c1⊗ c2)η =
c1η ×S c2η. This corresponds to conjunction of constraints. 2

The set of all possible secure access configurations forms a lattice, with
partial orderv, greatest lower bound operator⊗ and unique lowest boundC⊥.
Therefore, the configuration specified byCS1⊗CS2 provides the least restrictive
secure re-configuration for the interoperation of systemsS1 andS2.



180

Example 5 Using the semiring from Example 2, a systemS3 manages enti-
ties{a,c,d} and has access configuration

CS3(a,c) =̂ F CS3(a,d) =̂ F
CS3(d,c) =̂ F CS3(d,a) =̂ F

Since the system does not control access to entityb, no access constraints can
be placed on this entity. The least restrictive re-configuration of the composed
system is depicted asCS1 ⊗ CS3 in Figure 4. This new configuration ensures

Figure 4. ConfigurationsCS1, CS3 andCS1 ⊗ CS3 (Example 5).

(under thev ordering) that the access restrictions of the original configurations
are preserved. For example, whileCS1(a,c) =̂ T we haveCS1⊗CS3(a,c) = F
sinceCS3(a,c) =̂ F.

4

Configuration intersection can be used to guide the re-configuration of the
original systems. A systemS1 that is to be (securely) composed with a system
S2 should be re-configured using the access restrictions of(CS1 ⊗CS2). Since
⊗ gives the greatest lower bound on configurations according to the secure
reconfiguration (v) relation, then(CS1⊗CS2) gives the least restrictive secure
re-configuration ofCS1 that also ensures the access restrictions ofCS2.

Definition 4 Strict Secure Interoperation. SystemsS1 and S2 securely
interoperate in a strict manner if they enforce the access constraints of each
other, that is, ifCS1 can be regarded as a secure re-configuration ofCS2 and
vice-versa.

To ensure strict secure interoperation, systemS1 should be (securely) re-
configured asC′S1 =̂ (CS1 ⊗ CS2) and, similarlyC′S2 =̂ (CS1 ⊗ CS2). 2



181

The above definition of secure interoperation is overly restrictive as it re-
quires each system to be able to enforce the access restrictions of the other.
While the constraint(CS1 ⊗ CS2) represents the best secure (according tov)
re-configuration for the ‘combined’ system (defined in terms of entities from
both systems), in practice, the systemS1 can only enforce the restrictions on
the entities that it manages, and similarly forS2. It may not be feasible to
securely re-configureS1 with CS1 ⊗CS2 if S1 has no jurisdiction over entities
that are managed only byS2. We therefore consider a weaker notion of secure
interoperation.

Let thealphabetENTS ⊆ ENT of a systemS define the set of entities
over which the systemS can exercise access control. If we do not require
a system to be responsible for access control on entities that are not in its
alpabet then for secure interoperation betweenS1 andS2 we need only ensure
thatCS1 enforces the access constraints of the combined system for elements
of ENTS1, that is, whenever we have domain entitiesa,b ∈ ENTS1 then
CS1(a,b) ≤ (CS1 ⊗ CS2)(a,b). This can be defined in terms of the secure
re-configuration relation as follows.

Definition 5 Loose Secure Interoperation. Let C>S represent a systemS
that places/assumes no access constraint over elements inENTS , and com-
pletely denies flows among entities when one of them is not inENTS . More
formally, we haveC>S (X, Y ) =̂ >when bothX andY are elements ofENTS ,
andC>S (X, Y ) =̂ ⊥ when eitherX or Y (or both) are not elements ofENTS .
SystemsS1 andS2 loosely securely interoperate if they uphold the constraints
(with respect to elements from their alphabet) in their composition, that is,

CS1 ⊗ C>S1 v (CS1 ⊗ CS2)
CS2 ⊗ C>S2 v (CS1 ⊗ CS2)

To ensure loose secure interoperation, systemS1 should be (securely) re-
configured asC ′

S1(X, Y ) =̂ (CS1 ⊗ CS2) whenX, Y ∈ ENTS , and similarly
for S2. In the case of a boolean semiring, loose secure interoperation corre-
sponds to the lattice of reflexive flow policies defined in [Foley, 1992]. 2

Example 6 Continuing Example 5,S1 andS3 are re-configured for loose
secure interoperation as depicted in Figure 5. Note that in practice, networks
C′S1 andC′S2 would also include nodesd andb, respectively, but with no con-
necting arcs (unconstrained permissions, which we assume to be equivalent to
permitted accesses/flows).

If systemsCS1 andCS3 are reconfigured in this way then we can be confident
that their interoperation will be secure. 4



182

Figure 5. Re-configurationsC′S1 andC′S3 (Example 6).

6. Access Transitivity

Reconfiguration for (loose) secure interoperation gives the most permissive
reconfiguration (that does not violate the original configurations). If a system
does not include an entity in its alphabet then it is assumed that it places no
restrictions on access to it.

It is useful to consider variations of this operation for more restrictive sce-
narios. In particular, some entities that are common to interoperating systems
may induce transitive relationships between entities. For example, suppose
thatc is a service that is shared between systemsS1 andS3 (Example 5), and
CS1(b,c) andCS3(c,d). Rather than permitting all accesses betweenb andd
(as computed by⊗, since there are no explicit restrictions these entities), we
could instead assume that there is an implicit transitive restriction and weaken
the policy by allowing access fromb to d, but not vice-versa.

Example 7 The system configurationCS2
rw

(from Example 4) allows ac-
cessesCS2

rw
(a, b) = {r,w} andCS2

rw
(b, c) = {r}. However, access is not

permitted betweena andc in CS2
rw

. Regardingb as a transitive entity would
induce a transitive access that is the greatest lower bound of the accesses along
a path froma to c throughb; in this case we would have{r} ∩ {r,w} = {r}
access froma to c. 4

Definition 6 Transitive Weakening.The transitive weakening of a system
configurationCS1 with a set of transitive entitiesA is defined asC?A

S1 , where

C?A
S1 (X, Z) =̂ (CS1(X, Y )⊗ C′S1(Y, Z)) ⇓{X,Z}

whereC′S1 is defined as follows:



183

for each entitye ∈ ENT , C′S1(e, e) =̂ >;

if 〈e, g〉 ∈ CS1 , ande ∈ A (e is a transitive entity), thenC′S1(e, g) =̂ >;

2

In general we haveCS1 v C?A
S1 .

Theorem 1 Given a system with no transitive entityCS1 and the same system
C?A

S1 with a set of transitive entitiesA, we haveCS1 v C?A
S1 .

The transitive weakening corresponds to a weakening of the configuration
constraint: the new configuration may include (transitive) accesses that are not
permitted by the original configuration.

Definition 7 Secure Transitive Reconfiguration. ConfigurationCS1 is a se-
cure transitive reconfiguration of configurationCS2, with respect to a set of
transitive entitiesA, if its transitive weakening is a secure reconfiguration of
CS2, that is,

C?A
S1 v CS2

2

Example 8 For Example 7, we haveC?{b}
S2

rw
(a,c) = {r} and for any(X, Y ) 6=

(a, c), C
?{b}
S2

rw
(X, Y ) = CS1

rw
(X, Y ) (from Example 4) and thusCS2

rw
is not a

secure transitive reconfiguration of itself. A more strict configuration must be
found, for example, the most restrictiveC⊥. 4

Theorem 2 For all systemsCS , and for all sets of transitive entitiesA, C⊥
is a secure transitive reconfiguration with respect toA of CS . Also, given
A1 ⊆ A2 easily,C∗A1

S v C∗A2
S .

In practice, selectingC⊥ as the secure transitive reconfiguration is not useful
as the resulting configuration is overly restrictive. In general it is desirable to
find the smallest number of changes that must be made on the access links be-
tween entities that will ensure a secure transitive reconfiguration. Formally, we
search for a least restrictive secure transitive reconfiguration of a configuration
CS1, that is, a configurationCSt such that there is no other configurationCSt′

with CSt v CSt′ v CS1. We are currently exploring constraint-based schemes
for solving this type of problem.

Definition 8 (Loose) Secure Transitive Interoperation.SystemsS1andS2
securely interoperate via transitive entities inA if their interoperation is secure
when considering transitive weakening (usingA).



184

To ensure secure transitive interoperation we seek the least restrictive secure
reconfigurationsCt

S1 andCt
S2 of CS1 andCS2, respectively, such that

(Ct
S1 ⊗ Ct>

S1)
?A v CS1 ⊗ CS2

(Ct
S2 ⊗ Ct>

S2)
?A v CS1 ⊗ CS2

2

Example 9 The secure transitive interoperation reconfiguration ofS1 and
S3 (Example 5) with transitive entityb for permission flows is depicted in
Figure 6.

Figure 6. Reconfiguration(CS1 ⊗ CS3)
?{b} (Example 9).

Here, we assume that entityb can allow implicit transitive permission. This
means that since we have a flow betweena andb and betweenb andc, we
must have also a flow betweena andc.

The difference in the result is visible by comparingCS1 ⊗ CS3 in Figure 4
and(CS1 ⊗ CS3)?{b} in Figure 6. 4

7. Discussion and Conclusions

The approach that we present in this paper represents a paradigm shift in the
modelling and analysis of interoperability. We present a constraint model that
provides a natural description of a network of interoperating systems. While
constraint solving is NP-complete in general, this has not detracted from its
uptake as a practical approach to solving many real-world problems [Wallace,
1996]. Previous approaches determine secure interoperation in polynomial



185

time, but re-configuring an existing network of systems for secure interop-
eration, in an optimal way, is NP-complete [Gong and Qian, 1994, Gong and
Qian, 1996]. Using a constraint model, we can rely on a significant body of
successful techniques from the field of constraint processing for finding the set
of secure re-configurations with reasonable effort. As part of our future work
in this area we plan to develop an constraint-based implementation with which
to demonstrate our approach on some real world data.

References
Amman, P. and Sandhu, R. (1992). The extended schematic protection model.Journal of Com-

puter Security, 1(4).
Aziz, B., Foley, S.N., Herbert, J., and Swart, G. (2004). Configuring storage-area networks

for mandatory security. In18th Annual IFIP WG 11.3 Working Conference on Data and
Applications Security.

Bell, D.E. and Padula, L. J. La (1976). Secure computer system: unified exposition and MUL-
TICS interpretation. Report ESD-TR-75-306, The MITRE Corporation.

Bella, G. and Bistarelli, S. (2001). Soft Constraints for Security Protocol Analysis: Confiden-
tiality. In Proc. of the 3rd International Symposium on Practical Aspects of Declarative
Languages (PADL’01), LNCS 1990, pages 108–122. Springer-Verlag.

Bella, G. and Bistarelli, S. (2002). Confidentiality levels and deliberate/indeliberate protocol
attacks. InProc. Security Protocols 10th International Workshop, Cambridge, UK, April,
2002, Revised Papers, LNCS, pages 104–119. Springer-Verlag.

Bella, G. and Bistarelli, S. (2004). Soft constraint programming to analysing security protocols.
Theory and Practice of Logic Programming (TPLP), 4(5):1–28. To appear.

Bellone, J., Chamard, A., and Pradelles, C. (1992). Plane - an evolutive planning system for air-
craft production. InProc. 1st Interantional Conference on Practical Applications of Prolog
(PAP92).

Bertino, E. et al. (1998). An authorization model and its formal semantics. InProceedings of the
European Symposium on Research in Computer Security, pages 127–142. Springer LNCS
1485.

Bharadwaj, V.G and Baras, J.S. (2003). Towards automated negotiation of access control poli-
cies. InProc. of IEEE Workshop Policies for Distributed Systems and Networks, pages 77–
80.

Bistarelli, S. (2004).Semirings for Soft Constraint Solving and Programming, volume 2962 of
Lecture Notes in Computer Science. Springer.

Bistarelli, S. and Foley, S.N. (2003a). Analysis of integrity policies using soft constraints. In
Proceedings IEEE 4th International Workshop on Policies for Distributed Systems and Net-
works (POLICY2003), Lake Como,Italy, June 4-6, 2003, pages 77–80. IEEE Press.

Bistarelli, S. and Foley, S.N. (2003b). A constraint based framework for dependability goals:
Integrity. In 22nd International Conference on Computer Safety, Reliability and Security
(SAFECOMP2003), Proceedings, 23-26 September 2003, Edinburgh, Scotland, United King-
dom, volume 2788 ofLecture Notes in Computer Science, pages 130–143. Springer.

Bistarelli, S., Foley, S.N., and O’Sullivan, B. (2004a). Detecting and eliminating the cascade
vulnerability problem from multi-level security networks using soft constraints. InProceed-
ings Innovative Applications of Artificial Intelligence Conference (IAAI-04), pages 808–813.
AAAI Press.



186

Bistarelli, S., Foley, S.N., and O’Sullivan, B. (2004b). Modelling and detecting the cascade vul-
nerabiliy problem using soft constraints. InProc. ACM Symposium on Applied Computing
(SAC 2004), pages 383–390. ACM Press.

Bistarelli, S., Montanari, U., and Rossi, F. (1997). Semiring-based constraint solving and opti-
mization.Journal of ACM, 44(2):201–236.

Bistarelli, S., Montanari, U., and Rossi, F. (2002). Soft concurrent constraint programming. In
Programming Languages and Systems: 11th European Symposium on Programming, ESOP
2002 held as Part of the Joint European Conference on Theory and Practice of Software,
ETAPS 2002, Proceedings, Grenoble, France, April 8-12, 2002, volume 2305 ofLecture
Notes in Computer Science, pages 53–67. Springer.

Bistarelli, S. and O’Sullivan, B. (2003). A theoretical framework for tradeoff generation using
soft constraints. InResearch and Development in Intelligent Systems XX, Proceedings of AI-
2003, the Twenty-third SGAI International Conference on Knowledge-Based Systems and
Applied Artificial Intelligence, pages 69–82. Springer, BCS Conference Series "Research
and Development in Intelligent Systems xx".

Foley, S.N. (1992). Aggregation and separation as noninterference properties.Journal of Com-
puter Security, 1(2):159–188.

Foley, S.N. (1997). The specification and implementation of commercial security requirements
including dynamic segregation of duties. InACM Conference on Computer and Communi-
cations Security, pages 125–134.

Foley, S.N. (2000). Conduit cascades and secure synchronization. InACM New Security Paradigms
Workshop.

Fruehwirth, T. and Brisset, P. (1997). Optimal planning of digital cordless telecommunication
systems. InProc. PACT97, London, UH.

Gong, L. (1999).Inside Java2 Platform Security. Addison Wesley.
Gong, L. and Qian, X. (1994). The complexity and composability of secure interoperation. In

Proceedings of the Symposium on Security and Privacy, pages 190–200, Oakland, CA. IEEE
Press.

Gong, L. and Qian, X. (1996). Computational issues in secure interoperation.IEEE Trans. Softw.
Eng., 22(1):43–52.

Harrison, M., Ruzzo, W., and Ullman, J. (1976). Protection in operating systems.Communica-
tions of the ACM, 19:461–471.

Konstantinou, A.V., Yemini, Y., Bhatt, S., and Rajagopalan, S. (1999). Managing security in
dynamic networks. InProc. USENIX Lisa’99.

Lee, T.M.P. (1988). Using mandatory integrity to enforce ‘commerical’ security. InProceedings
of the Symposium on Security and Privacy, pages 140–146.

Sandhu, R. et al. (1996). Role based access control models.IEEE Computer, 29(2):38–47.
Wallace, M. (1996). Practical applications of constraint programming.Constraints, 1(1–2):139–

168.


