
Answer Set Optimization for and/or
composition of CP-nets: a security scenario?

Stefano Bistarelli1,2, Pamela Peretti1, and Irina Trubitsyna3

1 Dipartimento di Scienze, Università “G. d’Annunzio”, Pescara, Italy
{bista,peretti}@sci.unich.it

2 Istituto di Informatica e Telematica, CNR, Pisa, Italy
Stefano.Bistarelli@iit.cnr.it

3 DEIS Università della Calabria, Rende, Italy
irina@deis.unical.it

Abstract. Defence trees are used to represent attack and defence strate-
gies in security scenarios; the aim in such scenarios is to select the best set
of countermeasures have to be applied to stop all the vulnerabilities. To
represent the preference among the possible countermeasures of a given
attack, defence trees are enriched with CP-networks (CP-net for short).
However, for complex trees, composing CP-nets could be not always ef-
fective. In this paper we overcome these limitations by transforming each
CP-net in an Answer Set Optimization (ASO) program. The ASO pro-
gram, representing the overall scenario, is a special composition of the
programs associated to each branch of the defence tree. The best set of
countermeasure able to mitigate all the vulnerabilities is then obtained
by computing the optimal answer set of the corresponding ASO program.

1 Introduction

Security has become today a fundamental part of the enterprise investment. In
fact, more and more cases are reported showing the importance of assuring an
adequate level of protection to the enterprise’s assets. In order to focus the real
and concrete threat, a risk management process is needed to identify, describe
and analyze the possible vulnerabilities that have to be eliminated or reduced.
The final goal of the process is to make security managers aware of the possible
risks, and to guide them toward the adoption of a set of countermeasures which
can bring the overall risk under an acceptable level.

Defence trees, DT [3], have been introduced as a methodology for the analysis
of attack/defence security scenarios. A DT is an and-or tree, where leaves node
represent the vulnerabilities and the set of countermeasures available for their
mitigation, and nodes represent attacks composed by a set of actions that have
to be performed as a whole, and or nodes represent attacks that can succeed
also by completing only one of their child action. Notice that to defeat and
attacks it is enough to patch one of the vulnerabilities (by selecting a single
? This paper is partially supported by the MIUR PRIN 2005-015491.

2

countermeasure), whilst to stop or attacks, one countermeasure for each of the
actions composing the attack has to be selected.

The overall goal is to use the defence tree representation for the selection
of the best set of countermeasures (w.r.t. specific preference criteria such as
cost, efficiency, etc.), that can stop all the attacks to the system. To guide the
selection, CP-nets [5] have been proposed to model preferences over attacks
and countermeasures [4]. However, CP-nets are a graphical formalism that is
good and elegant for representing small scenarios, but not so effective for big
and complex scenarios. In particular, the methodology proposed in [4] aims at
composing together the CP-nets associated to each branch of the tree. Each CP-
net, in turn, represents the preferences among the countermeasure able to stop
a specific attack.

In this paper the preference among countermeasures and the dependency
between attacks and countermeasures represented as a CP-net, are translated
in answer set optimization (ASO) [8] programs. The and and or composition of
the branch is then obtained by a syntactic composition of the ASO programs,
whose semantics completely respects the intended meaning given in [4]. The
semantics of the obtained ASO program provides a set of ordered answer sets
representing the ordered sets of countermeasure to be adopted. To deal with
ordered attacks (from the more to the less dangerous), the model is extended by
introducing a corresponding rank among the preference rules of an ASO program.
In this case, a preference cycle among countermeasure could be generated in
the resulting CP-net. The use of ranked ASO program avoids this problem; in
fact, the introduction of meta-preferences gives precedence to the adoption of
countermeasures covering the more dangerous of the attacks (and removing in
this way the possibility to obtain a cycle).

2 Defence tree

Defence trees [3] are an extension of attack trees [12] and are used to represent
attack strategies that can be used a mitigation factor.

The root of the tree is associated with an asset of the IT system under consid-
eration and represents the attacker’s goal. Leaf nodes in the attack tree represent
simple subgoals which lead the attacker to damage the asset by exploiting a sin-
gle vulnerability. Non-leaf nodes (including the tree root) can be of two different
types: or-nodes and and-nodes. Subgoals associated with or-nodes are completed
as soon as any of its child nodes is achieved, while and-nodes represent subgoals
which require all of its child nodes to be completed (in the following we draw
an horizontal line between the arcs connecting an and-node to its children to
distinguish it from an or-node). The standard attack tree is then enriched by
decorating every leaf node with a set of countermeasures. Each countermeasure
associated with a leaf node represents a possible way of mitigating risk in an
attack scenario where that specific vulnerability is used.

Notice that in order to mitigate the risks deriving from an or-attack, the
system administrator has to introduce into the system a countermeasure for

3

Fig. 1. An example of defence tree.

each possible action of the branch. To mitigate the risks associated with an and-
attack, instead, it is enough to introduce a countermeasure for one of the attack
actions in the and-attack to stop the entire attack.

In the following example we use a defence tree to model an attack/defence
scenario for an organization’s IT system.

Example 1. An enterprise’s server is used to store information about customers. Fig-

ure 1 shows the corresponding attack/defence scenario: rounded-box nodes denote the

attack strategies and the different actions the attacker needs to perform, while square

box denote the different countermeasures the system administrator can adopt. 4

3 Answer Set Optimization Programs

Prioritized reasoning is an important extension of logic programming, that intro-
duce preference on partial and complete solutions. A variety of approaches was
proposed in the literature (see [10] for a survey of this topic). In this work we
uses two approaches for representing and reasoning with preference statements:
ASO and CR-prolog2.

The ASO approach uses preference rules in order to express the preference
relations among the combinations of atoms and introduces the preference order
among these rules. Moreover a tool implementing the ASO semantics and its
extensions, CHOPPER, has been recently proposed in [9].

An alternative way consists in the use of CR-prolog [1], a knowledge represen-
tation language based on the answer set semantic enriched with the introduction
of consistency-restoring rules that allows a formalization of events or exceptions
that are unlikely, unusual, or undesired. Its extension, CR-prolog2 [2] admits the
ordered disjunction in the head of rules and can be used to represent preferences
intended as strict preferences (as in CR-prolog) or desires (LPOD [7]).

An answer set optimization program (ASO) is a pair 〈P, Φ〉, where P is an
answer set program [11], called Generating Program, and Φ is called Preference
Program and consists of a finite set of preference rules of the form % : C1 >
· · · > Ck ← body, where body is a conjunction of literals, i.e. atoms or negation
of atoms, and Cis are boolean combinations of literals, i.e formulas built of atoms

4

by means of disjunctions, conjunctions, strong (¬) and default (not) negation
with the restriction that strong negation is allowed to appear only in front of
atoms and default negation only in front of literals.

A preference rule % ∈ Φ introduces a preference order between C1, ..., Ck: Ci

is preferred to Cj , for i < j and i, j ∈ [1..k]. Thus Φ determines a preference
ordering on the answer sets described by P.

Let Φ = {%1, ..., %n} be a preference program and S be an answer set, then S
induces a satisfaction vector VS = (vS(%1), ..., vS(%n)) where: a) vS(%j) = I, if
%j is Irrelevant to S, i.e. (i) the body of %j is not satisfied in S or (ii) the body of
%j is satisfied, but none of the Cis is satisfied in S. b) vS(%j) = min{i : S |= Ci},
otherwise. The satisfaction vectors are used to compare the answer sets.

Let S1 and S2 be two answer sets, then (i) S1 ≥ S2 if VS1 ≤ VS2 , i.e. if
vS1(%i) ≤ vS2(%i) for every i ∈ [1..n]; (ii) S1 > S2 if VS1 < VS2 , i.e. if VS1 ≤ VS2

and for some i ∈ [1..n] vS1(%i) < vS2(%i).
A set of literals S is an optimal answer set of an ASO program 〈P, Φ〉 if S is an
answer set of P and there is no answer set S′ of P such then S′ > S.

The ASO strategy is further extended by introducing meta-preferences among
preference rules: a ranked ASO program is a sequence 〈P, Φ1, ..., Φn〉 consisting
of a generating program P and a sequence of pairwise disjoint preference pro-
grams Φi. The rank of a rule r ∈ Φ1 ∪ · · · ∪ Φn, denoted rank(r), is the unique
integer i for which r ∈ Φi.

Intuitively, the rank of the preference rule determines its importance: prefe-
rence rules with lower rank are preferred over preference rules with higher rank.
The optimal answer sets can be obtained in the following way: firstly, all answer
sets optimal w.r.t. Φ1 have to be selected; then, have to be selected the ones
optimal w.r.t. Φ2; and so on. More formally, S1 ≥rank S2 if for every preference
rule r′ such that vS1(r

′) ≤ vS2(r
′) does not hold, there is a rule r′′ such that

rank(r′′) < rank(r′) and vS1(r
′′) < vS2(r

′′).

4 CP-defence trees

CP-networks [5] are a graphical formalism for representing and reasoning with
preference statements which proposes a ceteris paribus (all else being equal) in-
terpretation. The combination of defence trees and CP-nets has been recently
proposed [4] as a methodology to help the system administrator to analyze a se-
curity scenario and to give him a model to represent preferences among counter-
measure. The resulting structure, called CP-defence tree, integrating the CP-net
described in Figure 2 is presented in Figure 2(c). The CP-net graph G in Fig-
ure 2(a) highlights that the preference over countermeasures is conditioned by
the corresponding attack. CPT (A) describes the preference of protecting from
each attack ai ∈ A: the system administrator prefers to protect the action a2

to the action a1, a1 to the action a6 and so on. CPT (C) collects the preferen-
ces among the countermeasures, that protect each action. For instance, for the
action a3 the countermeasure c6 is preferable to c7.

5

A

C

G

(a)

a2 Â a1 Â a6 Â a5 Â a3 Â a4

a1 c1 Â c2 Â c3

a2 c5 Â c3 Â c4

a3 c6 Â c7

a4 c8 Â c9

a5 c11 Â c10

a6 c13 Â c12

CPT(A)

CPT(C)

(b) (c)

Fig. 2. A CP-defence tree.

Considering Figure 2(c) the preference order over actions, described in CPT (A),
is represented with dotted arrows; while conditional preferences over countermea-
sures, described in CPT (C), are represented by using solid arrows. The arrows
are directed from the less preferred to the more preferred outcome.

Thus, given an IT system represented as the root of the tree, the correspond-
ing CP-defence tree gives a graphical representation of the attack strategies that
an attacker can pursue to damage the system, the different actions composing
each attack and the countermeasures to be activated to stop them. Moreover, a
preference order among attacks and countermeasures is highlighted.

4.1 and/or composition of attacks

In order to find the preferred defence strategy, the approach, consisting in the
composition of preferences, was proposed in [4]. More in details, two different
methods establishing the preference order among the countermeasures able to
stop an and-attack and an or-attack were presented.

and-composition. To protect the system from an attack obtained by an and-
composition of actions, the system administrator can stop any one of them. When
an order among attacks is given the resulting strategy consist in the selection of
the best countermeasure for the most dangerous of the actions.

Sometime not only the best countermeasure have to be activated but some
of them (for instance because the countermeasure is only able to cover part of
the attack). In this case the system administrator need to consider not only the
best countermeasure, but the overall resulting countermeasure order.

More formally, given the and-attack, composed by two actions u and v, where
u Â v, and given the sets of countermeasures Du and Dv, protecting from u and
v respectively, and two partial order (Du,Âu) and (Dv,Âv), the and-composition
of preferences is a new partial order (Du∪Dv,Âv∧v), where a countermeasure c is
preferred to a countermeasure c′ if (i) it is preferred in at least one of the partial
orders (Du,Âu), (Dv,Âv), i.e. c Âu c′ or c Âv c′, otherwise (ii) c is the worst
countermeasure in (Du,Âu), while c′ is the best countermeasure in (Dv,Âv), i.e
∀x ∈ Du, x 6Âu c and ∀y ∈ Dv, c′ 6Âv y.

Thus, the and-composition, corresponding to the and-attack, preserves the
partial orderings among the countermeasures, corresponding to each attack ac-

6

Pand r1 : root←
r2 : x ∨ y← root

rx2 : a ∨ b ∨ c← x

ry2 : a ∨ c← y

%x : a > b > c← x

%y : c > a← y

Por r1 : root′ ←
r2 : x← root′

r3 : y← root′

rx2 : a ∨ b ∨ c← x

ry2 : a ∨ c← y

%x : a > b > c← x

%y : c > a← y

Fig. 3. An example of and/or attacks (with cycles) and the corresponding ASO pro-
grams.

tion and introduces the bridge preference rule, connecting the corresponding
orderings. As an example consider the defence tree in the left side of Figure 3,
and consider an and-attack root, composed by two actions x and y, where y Â x.
The order obtained by and-composition is c Â a Â b Â c. We can notice that
in this case a cycle is obtained. Since the countermeasure of the worst attacks
have to be considered as preferred, the cycle is broken by removing one of the
preference among the countermeasure of the less dangerous attack x. More pre-
cisely, the preference relations, described in (Dy,Ây) has to be considered as
more important, and the relation b Âx c, generating (transitively) the conflict,
has to be omitted.

As shown [6] not always is possible determine the most preferred outcome
from a CP-net with an inconsistent preference order (i.e. cycle). In order to solve
this problem we use the preference order over attacks in order to delete some
edges from the induced preference graph and break the cycle. If we don’t use
this information we can obtain more that one outcome and we can’t select the
most preferred countermeasure to stop an and-attack.

Let us now to consider how to model this by using ASO programs.

Example 2. Consider the attack action depicted in left side of Figure 3, the attack

action x and the preference order over the corresponding countermeasures a, b, and c

generate the following ASO program 〈Px, Φx〉:
Px rx1 : x←, rx2 : a ∨ b ∨ c← x Φx %x : a > b > c← x

where the rule rx1 and rx2 introduce the action and the possible countermeasures,

while %x represents the preference order among them. The same result is obtained for

the attack action y, the corresponding 〈Py, Φy〉 program is:

Py ry1 : y←, ry2 : a ∨ c← y Φy %y : c > a← y

In order to model the and-node root, a new program 〈Pand, Φy, Φx〉 is generated com-

bining the rules in 〈Px, Φx〉 and 〈Py, Φy〉 (see Figure 3). Pand introduces two new rules:

r1 represents the root action, while r2 combines the action x and y in such way that

only one of them must be stopped. The others rules are a added without any change.

The answer sets of Pand are M1 = {root, x, a}, M2 = {root, x, b}, M3 = {root, x, c},
M4 = {root, y, c} and M5 = {root, y, a}. In order to establish the optimal answer

set, the ASO semantics firstly constructs the satisfaction vectors VM1 = [∞, 1]4,

4 In this application the irrelevance corresponds to the worst case.

7

VM2 = [∞, 2], VM3 = [∞, 3], VM4 = [1,∞] and VM5 = [2,∞], reporting the sati-

sfaction degree of each preference rule in the answer sets. Considering firstly %y and

then %x the order among the answer set is M4 > M5 > M1 > M2 > M3
5. Concluding,

the new order among the countermeasures is c > a > b 4

or-composition. The second method, called or-composition, was used to de-
termine a preference order in the selection of the countermeasures able to stop
an or-attack, i.e. an attack composed by a set of alternative actions one of which
has to be successfully achieved to obtain the goal. The protection from this kind
of attack consists in the protection from all the actions composing the or-attack.
Intuitively, the most preferred strategy has to select the best countermeasure for
each action or the countermeasure able to stop the bigger number of actions.

Again, in order to be able to select more than one countermeasure, a com-
plete order among all of them need to be created. More formally, given the
or-attack X, composed by k actions u1, . . . , uk, the sets of countermeasures
Du1 , . . . , Duk

protecting u1, . . . , uk respectively, and the orders among counter-
measure (Dui

,Âui
) for i = {1, . . . , k}, then the or-composition is a new order

(DX ,ÂX). The order is defined over the set DX , whose elements C1, ..., Cn are
the sets of countermeasures covering all the attacks u1, ...uk, and ÂX is defined
as follows: the set C is preferred to the set C ′ if there is a permutation π such
that for all i ∈ [1, . . . , k], ci is not worst than c′π(i), i.e. for k = k′, ∃π s.t.
ci 6≺ c′π(i). Notice also that when the same countermeasure is selected two times
(to cover two different attacks), we consider its presence only one time.

Using the logic programming and the ASO semantics we can determine the
preferred set of countermeasure faster than using the classical CP-net.

Example 3. As an example consider again the defence tree in the left side of Figure 3

and the or-attack root′ composed by three action x and y. The corresponding ASO

program 〈Por, Φy, Φx〉 is generated combing 〈Px, Φx〉, 〈Py, Φy〉 (see Figure 3). A new

rule r1, introduced in Por, represents root′, while the rules r2, r3 and r4 model the

or-attack, i.e. that all the three action must be stopped to stop the root.

The answer sets of Por are M1 = {root′, x, y, a} and M2 = {root′, x, y, c}6 and describes

the application of two alternative sets of countermeasures {a} and {c}, protecting from

the or-attack. In order to establish the optimal answer set, the ASO semantics firstly

construct the satisfaction vectors VM1 = [1, 2] and VM2 = [2, 1]. Then it compares these

vectors, by firstly considering %y ∈ Φy, obtaining that VM2 < VM1 . Concluding, M2 is

the optimal answer set and {c} is the preferred set of countermeasures. 4

Implementation Given an IT system root and the corresponding CP-defence tree
T , the selection of the preferred defence strategy can be modelled by means of the
5 Notice that both the answer set M1 and M5 contain countermeasure a. However, we

collect the countermeasure to be applied starting from the best model, so from M4

we collect c from M5 we collect a, and from M2 we collect b.
6 We reminded that the ASO semantics [11] only collect minimal answer set, so among

the set M1 = {root′, x, y, a} and M ′
1 = {root′, x, y, b, a} only M1 is considered be-

cause M ′
1 do not satisfy respectively rule rx2 .

8

corresponding logic program with preferences, then an ASO program solver can
be used to automatically obtain the set of the best countermeasure. We used for
our security scenario analysis CPdt-Solver. CPdt-Solver is an application-
oriented version of CHOPPER [9], realizing ASO semantics over the ranked
answer set optimization program, under the assumption that I ≡ ∞.

The same scenarios can be represented also by using the CR-Prolog2 seman-
tics, the only difference is that the preference among the countermeasures and the
corresponding ordering can be written by using only one rule. An implementation
is available for download from http://www.krlab.cs.ttu.edu/Software/.

5 Conclusion

In this paper we use the ASO semantics as an instrument to represent and solve
the problem of countermeasure selection in a security scenario defined using
a defence tree and a CP-net. The CP-net is used to describe the dependency
among attacks and countermeasures, the preferences among the countermea-
sures, and (possibly) the order among attacks (depending from their seriousness
or other parameters), whilst the defense tree represent the scenario associating
each countermeasure to each attack action. The structure of the defence tree is
built bottom-up by connecting with and nodes actions to be performed at a whole
and with or node actions that by themselves can lead to a successful attack. In
particular, the composition of CP-net needed to deal with and/or nodes is sub-
stituted by a composition of the corresponding ASO program. The composition
of the ASO programs results extremely easy w.r.t. the composition of CP-net,
and automatically remove cycles that can be obtained with and-composition.

References

1. M. Balduccini and M. Gelfond. Logic programs with consistency-restoring rules.
In Int. Symp. on Logical Formalization of Commonsense Reasoning,, pages 9–18.
AAAI 2003 Spring Symposium Series, 2003.

2. M. Balduccini and Veena S. Mellarkod. Cr-prolog2: Cr-prolog with ordered dis-
junction. In In ASP03 Answer Set Programming, volume 78, 2003.

3. S. Bistarelli, F. Fioravanti, and P. Peretti. Defense tree for economic evaluations
of security investment. In 1st Int. Conf. on Availability, Reliability and Security
(ARES’06), pages 416–423, 2006.

4. S. Bistarelli, F. Fioravanti, and P. Peretti. Using cp-nets as a guide for counter-
measure selection. In ACM SAC2007, 2007.

5. C. Boutilier, R. I. Brafman, C. Domshlak, H. Hoos, and D. Poole. Cp-nets: A tool
for representing and reasoning with conditional ceteris paribus preference state-
ments. JAIR, 21, 2004.

6. R. I. Brafman and Y. Dimopolous. Extended semantics and optimization algo-
rithms for cp-networks. Computational Intelligence, 20(2):218–245, 2004.

7. G. Brewka. Logic programming with ordered disjunction. In 18th Conf. on Arti-
ficial intelligence, pages 100–105. American Association for AI, 2002.

8. G. Brewka, I. Niemela, and M. Truszczynski. Answer set optimization. In Proc.
of the 18th Int. Joint Conf. on Artificial Intelligence, pages 867–872, 2003.

9

9. L. Caroprese, I. Trubitsyna, and E. Zumpano. Implementing prioritized reasoning
in logic programming. In Proc. of the ICEIS, 2007.

10. J. P. Delgrande, T. Schaub, H. Tompits, and Wang K. A classification and sur-
vey of preference handling approaches in nonmonotonic reasoning. Computational
Intelligence, 20(2):308–334, 2004.

11. M. Gelfond and V. Lifschitz. Classical negation in logic programs and disjunctive
databasesg. New Generation Computing, 9:365–385, 1991.

12. B. Schneier. Attack trees: Modeling security threats. Dr. Dobb’s Journal, 1999.

