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Abstract—In the discipline of computer security, the field of
Trust Management Design is dedicated to the design of trusted
systems, in particular trusted networks. One common trusted
mechanism used these days is the Multi-Level Security (MLS)
mechanism, that allows simultaneous access to systems by users
with different levels of security clearance in an interconnected
network. Vulnerability arises when an intruder takes advantage
of the network connectivity and creates an inappropriate flow of
information across the network, leading to the so-called Cascade
Vulnerability Problem (CVP).

In this article, we extend an existent approach to this prob-
lem proposed by Bistarelli et al. [1] that models, detects and
properly eliminates the CVP in a network. This particular
approach expresses a solution of the problem using Constraint
Programming. We incorporate real-world criteria to consider
into this approach, such as the bandwidth, electricity, cost
of connections. Considering such features in CVP results in
generating a constraint optimization problem.

I. INTRODUCTION

A. Motivation

In inter-connected systems, where several computers share

information with each other, problems may arise when in-

appropriate information starts to flow through. For example,

let us consider a simple scenario of a university composed

of three departments: payroll, financial aid, and academic

services. We know that the payroll department deals with

sensitive information, such as social security numbers, dates

of birth, amounts of wages, etc. The financial aid department

may use information that payroll owns. Similarly, the academic

department communicates with the financial aid department.

An intruder can take advantage of this network connectivity

and create an inappropriate flow of information across the net-

work, leading to the so-called Cascade Vulnerability Problem

(CVP) [14].

Several approaches have been proposed to solve this prob-

lem. Among them, the approach of Bistarelli et al. [1] is

of particular interest to us: it expresses a solution of the

problem using Constraint Programming, and more specifically

soft constraints [3], [4]. This approach not only enables to

detect the vulnerable paths in a network, but also to eliminate

appropriate elements of the network that provoke the security

leakage.

Bistarelli et al. provide an efficient algorithm to determine

the minimal number of network cuts required to limit in-

formation leakage below some threshold level. However, our

key observation is that the operational value of providing

connectivity is not uniform. For example, it may be far

more valuable for an online store to sever links between its

web server and multiple internal personnel databases, than to

sever its single link to the internet. The former might cause

inconvenience, however the latter ”minimum number of cuts”

solution would disconnect the store from its customers.

Considering such features in CVP results in generating a

constraint optimization problem. In this paper, we explore an

extension of the work of Bistarelli et al., in which we take

into account the above-mentioned criteria.

Our contribution to solving the CVP consists in assigning

and taking into account values associated to the systems and

to the connections between systems. We call these values

weights, they are assigned to connections, and these weights

will determine the cost of the communication.

B. Outline of the Article

In Section II, we present preliminary notions, important to

understand our contribution: in computer security, in particular

the Cascade Vulnerability Problem, the current approaches

proposed; and background on Constraint Programming, more

specifically, soft-constraints. In Section III, we describe the

problem we are solving, in a high level manner, including our

proposed approach along with the algorithm. In Section IV,

we trace our approach on an example. Finally, we conclude

and draw directions for future work in Section V.

II. BACKGROUND

A. Trusted Systems

In the discipline of computer security, the field of Trust

Management Design is concerned about designing trusted

systems. A trusted system (operating system, network, soft-

ware, etc.) is said to be trusted if we have confidence that

it provides memory protection, file protection, general object

access control, and user authentication [12].



B. MLS

A Multilevel Security (MLS) mechanism allows simultane-

ous access to systems by users with different levels of security

clearance. As a result, these security clearances prevent users

from obtaining access to information for which they do not

own authorization.

A MLS system enforces a lattice-based security policy ℓ of

security levels, that has ordering relation ≤. Given x, y ∈ ℓ,

x ≤ y means that information may flow from level x to y;

e.g., C ≤ S ≤ T.

C. Cascade Vulnerability Problem (CVP)

The Cascade Vulnerability Problem (CVP) is a problem

that arises in interconnected approved networks on trusted

network interpretation. An approved network is a network that

every computer system that belongs to it, agrees to own a

security assurance level. The CVP arises when an intruder

takes advantage of the network connectivity to compromise

information across a range of sensitivity levels, and the span

of accessed levels exceeds the accreditation range of any of

the computers.

D. Assurance Levels

The security criteria define a lattice, A, of assurance levels

with ordering ≤. Given x, y ∈ A, then x ≤ y means that a

system evaluated at y is no less secure than a system evaluated

at x, or alternatively, that an intruder that can compromise

a system evaluated at y can compromise a system evaluated

at x. Let S define a set of all possible systems. We define

accred : S → A where accred(s) gives the assurance level of

system s ∈ S, and is taken to represent the minimum effort

required by an intruder to compromise system s.

E. Current Approaches

Several approaches were proposed that model and detect the

CVP [9], [10], and solve this problem [11]. Among them, the

approach of [1]. is of particular interest to us, as it expresses

a solution of the problem using Constraint Programming, and

more specifically soft constraints.

This approach models a network that is affected by a CVP

with soft constraints. In addition to detecting the vulnerable

paths in the network, this approach also eliminates appropriate

elements in the network that cause the security leakage. This

approach, although efficient, is limited because it overlooks

important real world criteria such as cost, delay, bandwidth,

money, among others.

F. Constraint Programming and Soft Constraints

Constraint programming is a powerful paradigm for solving

large scale problems such as combinatorial search, optimiza-

tion, scheduling bioinformatics among many others. [13].

The advantage of this paradigm consists in modeling real-

world problems like the cascade vulnerability in terms of their

constraints, and finding an assignment to all the variables that

satisfies the constraints. As soon as the problem is modeled

in these terms, the rest of the work is in charge of constraint

solvers; obtaining a set of all possible solutions of the problem.

1) Semiring-based Soft Constraints: Semiring-based con-

straints constitute an extended framework for constraint solv-

ing. Although the framework of classical Constraint Satisfac-

tion Problems is very expressive and offers a natural formalism

for representing problems, it has evident limitations, mainly

due to the fact that it does not offer enough flexiblility to

represent real-life scenarios where the knowledge is neither

completely available nor crisp [4].

On the other hand, soft constraint programming is par-

ticularly useful to model and solve what we called over-

constrained and preference-based problems, such as the Cas-

cade Vulnerability Problem.

The semiring-based CSP framework is based on a semiring

structure where the carrier set of the semiring specifies the

values to be associated with each tuple of values of the

variable domain, and the two semiring operations (+ and ×)

model constraint projection and combination respectively.

2) Modeling and Detecting CVP: If an intruder takes

advantage of the network connectivity, resulting that the flow

of information leaks from system to system, we call this a

cascade leakage.

If the effort that the intruder has to put to break into the

system(s) is known to be lower than the downgrading of

information that the intruder obtains, then there is a cascading

effect.

In order to determine the existence of such a cascading

effect, we need to compare the effort required to compromise

the network against the risk of compromising the system as a

whole. We use the risk constraints defined in [1]:

R = {r(ps

1
,pd

i
)i ∈ {2, . . . , n}}

The weight of each instance of r(ps

1
,pd

i
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associated with the path from P s
1 to P d

i .

A cascading path can be identified as any path η where the

risk associated with the path exceeds the effort to compromise

it. In other words, it means that the following constraint is

satisfied:

⊗Rη > ⊗εη

By incorporating this constraint to the constraint model, the

existence of a solution to the model indicates that there exists

a cascading path.

G. Minimal Weighted Set Cover

Our approach to solve the Cascade Vulnerability Problem is

based on the theory of minimal weighted set cover (MWSC).

The MWSC is solved as an optimization problem that models

resource-selection problems [6].

1) Formal definition: The MWSC takes as an input a set

system (U, S), andc with
⋃

s∈S S = U , weights c : S → ℜ+.

A set system is a pair (U, F ) where U is a non-empty finite

set, and F a family of subsets of U [7].



The objective is to find a minimum weight set cover of

(U, S), i.e., a subfamily R ⊆ S where R is the solution of the

following constrained optimization problem:







min
∑

r∈R ci

s. t.
⋃

r∈R R = U

and
⋃

r∈R Sr = U

III. OUR APPROACH.

The approach that is of particular interest to us is the

work proposed by Bistarelli et al. [1]. We are extending this

approach, by associating weights to all connections between

computer systems. These weights are real world values such

as bandwidth, delay, cost, etc. We use the Minimum Weighted

Set Cover theory as our theoretical basis to determine the least

expensive cuts that should be performed in the network, in

order to ensure the security of our network.

A. Brief Explanation

Our approach is illustrated in Figure 1:

Given a network composed by computers (A), the network in

Figure 1 is modeled by the approach of Bistarelli et al. [1]. In

case a CVP is detected, we move to the next step (which is

modeled as a graph). In case no CVP is detected, the network

is considered to be CVP free.

Our contribution to solve this problem starts at (B), where

the computers that share the same security connectivity level

are arranged into sets of computers. Given these sets of com-

puters with their respective adjacent edges, this interpretation

leads us to represent the problem as a MWSC problem (C),

and to solve it using the MWSC greedy algorithm [15].

This MWSC solver performs the algorithm mentioned in

Section III-F. The output (D) is a trusted network where the

connections that were initially causing the CVP were cut, and

the cost of the cuts is the cheapest among the possible cuts to

solve the CVP problem.

Fig. 1. Our approach.

B. Input Data (informal description).

The input to our algorithm is a network with a possible

security leakage, known as the cascade vulnerability problem.

The network is composed of computer systems with some

connections between each other. The input also contains addi-

tional information, such as, for every connection, bandwidth,

delay, monthly cost, etc.

Taking into account these additional features (such as

bandwidth) constitutes our improvement to the approach of

Bistarelli et al. [1].

C. Desired output (informal description).

The expected result is a network, constituted of as many

computer systems as the original one, but where appropri-

ate cuts in the connections and new connections have been

performed. By appropriate, we mean that the chosen trans-

formations (cuts) are the least significant ones and that these

transformations make the network secure.

D. Input Data (formal description): graph representation.

Let us consider a network N , composed of a finite number n

of computers systems {s1, s2, . . . , sn}. Each computer system

may have connections to other computer systems.

This problem can be naturally expressed as a directed

weighted graph. A directed weighted graph is denoted by

G = (V, E), where V is a set of vertices (systems), E is a

set of ordered pairs of vertices called edges, and each edge is

associated with some value that we call weights. These weights

are given by a weight function w : E → [0,∞[. We indicate

the weight of an edge (u, v) by wuv .

The direction of the edges denotes the permitted flow

between systems in a Multi-Level Security (MLS) mechanism

e.g., it is not permitted that a top-secret information flow down

to a classified system. The values on the edges are called

weights, that denote the criteria mentioned in previous section.

In Figure 2, the Top Secret (TS) information in System A

is allowed to flow to the TS level in System B, and from the

Secret (S) level in System B to the S level in System C. The

criterion to be considered is bandwidth. There is an allowed

flow of information from System A to System B of 8 Gb/s.

There is another flow of information from System B to System

C of 25 Gb/s.

Fig. 2. A network composed of 3 systems. Here, weights represent the
bandwidth.



E. The Minimum Weighted Set Cover relation with CVP

In order to get rid of a Cascade Vulnerability Problem in a

network, it is necessary to cut the connections that are causing

the cascading leakage. However, in cutting these connections,

the services provided by the network are affected. Therefore,

in order to maintain a secure network when eliminating the

CVP, it is preferable to cut the least expensive connections

(i.e., with least significant weights) as possible.

It is possible to do so by solving a corresponding Minimum

Weighted Set Cover (MWSC) problem. Indeed, we translate

our CVP problem into a Minimum Weighted Set Cover

(MWSC) problem, in order to determine which connections

are the most appropriate to cut (i.e., the cheapest ones) among

those generating the information leakage.

The algorithm that we follow to solve the CVP problem,

where criteria on the connections are taken into account, is

described in the next subsection.

F. Algorithm

1) Modeling:

(i) We model each system in N according to its secure

information flow. The flow reflects the accesses that are

permitted by the system’s MLS mechanism.

(ii) Once the systems are modeled, we model the network

connectivity to determine if the network flow is

permitted or invalid. This depends on each system

security level synchronization, e.g., A TS level in a

system is connected to another system TS level. We use

risk and effort constraints (as described earlier in this

paper) to model the network.

2) Detect the existence of a CVP: At this step, we deter-

mine whether the network has a security leakage or not.

(i) Compare the effort required to compromise the network

⊗Rη against the risk of compromising the ⊗ǫη system

as a whole. This is done to determine the existence of

cascade vulnerabilities. These constraints are explained

in Section II.

(ii) In case the risk constraint exceeds the value of the effort

constraint (⊗Rη > ⊗ǫη), we say that a solution(s) was

found.

IF a solution(s) was found THEN

cvp found ← TRUE

solution set{} ← get solutions()

ELSE

cvp found← FALSE %A cascade-free network

solution set{} ← {}

3) Model the network as a graph: If there is a Cascade

Vulnerability Problem, the network is then represented as a

graph. Once the network is translated as a graph, we determine

the sets of computers. For every computer that share the

same security level are considered to be in the same set of

computers.

(i) Systems si ∈ G are connected to other systems in the

network through an edge e(si, sj). Every system that

shares the same security level synchronization edge with

another computer, is candidate to be in the same set

system S.

(ii) Every set Si is composed of a set of computers connected

to each other {s1, s2, . . . , si}, with the corresponding

associated values on the edges.

IF is adjacent(si, sj) == TRUE THEN

Si := (si, sj , wij)

4) Apply MWSC Operational Procedure: Once the graph

is modeled we apply the MWSC procedure.

• As an input, we have:

Universe U = {s1, s2, . . . , sn},
Subsets S = {S1, . . . , Sk},
Costs c = {c1, c2, . . . , ck}

• The goal is:

To find a set I ⊂ {1, 2, . . . , n}

{

I minimizes
∑

i∈I ci

and
⋃

i∈I Si = U

We apply the greedy set cover algorithm described in [15].

This algoritm selects an approximation of a minimal set of

removed links, and keeps track of the weights of each set.

Set C := ∅ (Is a set of elements covered so far)

Set S := ∅ (The average cost per newly covered element)

WHILE C 6= U DO:

Find the set whose average cost is smaller, say S.

Let α = c(S)
|S\C| , i.e., is minimum avg. cost of S.

Pick S, and for each e ∈ S\C, set a weight(e) = α.

C ← C
⋃

S.

Output the picked sets.

IV. EXAMPLE

Consider the example given in the motivation. A common

university is composed of several departments. In this par-

ticular example, we have the payroll, financial aid records,

academic services, and student services departments. These

departments are connected in the same order as shown in

Figure 3. Each department owns TS, S, or C information, or

a combination of these assurance levels.

Given this network, we need to figure out whether there is

a potential cascade vulnerability leakage. If there is a leakage,

we need to remove the least significant computer connections



Fig. 3. A Network composed of 5 computers systems. A: payroll, B: financial
aid, C: records, D: academic services, and E: student services

that are causing this leakage, in order for the resulting network

to be cascade free.

• First, we use the approach of [1] to model the problem

using the (⊗Rη > ⊗ǫη) constraints. Figure 4 illustrates

the detection of the CVP using these constraints.

• The next step consists in representing the network as

a graph in order to obtain system sets. Consider the

network as a graph, the computer systems as vertexes,

and their connections as edges. Adjacent systems belong

to the same system set.

Fig. 4. CVP Detection using Constraints Risk and Effort

In our example, payroll and financial aid are connected

because of their security level synchronization (TS),

resulting in having these two computers in the same

system set. In the same way, there is a connection

between financial aid, records, and academic services

that synchronizes S information, and so on.

• According to the security level connectivity in the net-

work, we obtain the following sets:

S1 = {systemA, systemB}
S2 = {systemB, systemC , systemD}
S3 = {systemD, systemE}

• For every system generated, we assign a value (which

are the costs) according to the connectivity weights that

each edge in the set has. In this way, we obtain a set

of costs: c = {c(S1), c(S2), c(S3)}, where c(S1) = 12,

c(S2) = 16, c(S3) = 33.

• Once we have the system sets {S1, S2, S3}, and their

associated costs, we invoke the MWSC procedure, that

will perform the Greedy algorithm for Set Cover. For

every iteration, we keep track of the cost of each set

and the value of each element in the sets. After running

this algorithm, we obtain the following table. following

results:

Step Set Selection C W Systems

Step 1 S1 6 12 {A,B}
S2 8 8 {C,D}
S3 33 25 {E}

Step 2 S2 5.3 8 {B,C,D}
S1 12 12 {A}
S3 33 25 {E}

Step 3 S3 16.5 25 {D,E}
S2 8 8 {B,C}
S1 12 12 {A}

After running the greedy algorithm for the set cover three

times, we obtained the results mentioned in Table 1. The

logical solution using other approaches would consist in elim-

inating the elements with lower assurance levels. For instance,

in this case, systems D and E would be deleted.

On the contrary, when we run the algorithm proposed in this

article, we can observe that, for each iteration, these elements,

D and E, obtained a high cost value, which happens to be the

most expensive in the network.

The element in the network that, on average, has the

smallest connection value, is system B, which belongs to S2.

Therefore the candidate connection to be eliminated is the

one that connects system A with system B, because it is the

least expensive connection in the network, despite the fact

that it owns the TS information.



V. CONCLUSION

In this article, we considered a problem of security leakage

in a network of computer systems. The particular problem we

addressed is well-known as the Cascade Vulnerability problem,

in a Multi-Level Security (MLS) environment.

Our approach consisted in extending the previous work

of Bistarelli et al. [1], by taking into account values on the

connections of the network: some connections are indeed

more valuable than others, and we needed to represent such

information.

Our contribution was the following: We kept the approach

of Bistarelli et al., using soft constraints to model, detect

and solve the Cascade Vulnerability problem (CVP), but we

extended it by using a Minimum Weight Set Cover approach

to deal with the connections’ values. This way, we were able

not only to detect the CVP (if there was any), but also to

make the least expensive cuts in the network’s connections.

The system, after the cuts provided by our approach, was

leakage free.

As future work, we will implement our algorithm and test

it on real MLS mechanism networks. In addition, we plan to

apply this methodology in trusted models different from MLS,

to see if the results make sense in another kind of environment.

We also plan to consider not only values on the connections

of the network, but also weights of each computer system.
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