
Evaluation-Based Semiring Meta-Constraints

Jerome Kelleher and Barry O’Sullivan
4C, Department of Computer Science, UCC

jerome.kelleher@cs.ucc.ie

b.osullivan@cs.ucc.ie

This work has received support from Enterprise Ireland under their

Basic Research Grant Scheme (Grant Number SC/02/289).

1

Summary

• Informal presentation of the semiring framework;

• Meta-constraints;

• Compilation vs Evaluation;

• Empirical Evaluation.

2

Semiring Framework - Informally

• Semiring framework provides an architecture for generalised
problem solving.

• Specifies a class of problems using:

? A set to represent all levels of consistency;

? An operator which takes two elements of this set and returns the
better (if either);

? An operator which takes two elements of this set and returns the
combination;

? A lower bound on consistency; and,

? An upper bound on problem consistency.

3

Soft Constraint Problems

To specify a particular problem within a class (semiring)
we need:

• A set of variables;

• A set of constraints defined in terms of these variables;

? In the functional formulation constraints are functions[Soft Concur-
rent Constraint Programming, S. Bistarelli and U. Montanari and F.
Rossi, ESOP ’02].

4

Example Problem

• Semiring: 〈R+,min, +,+∞, 0〉;

• Variables: x, y and z, each defined over domain {1..4};

• Constraints:

? c1η = x−
2
3y

1
2

? c2η = z
2
3y−

3
2

5

Meta-Constraints

• Constraints that involve other constraints;

• E.g. Combination, projection, solution, blevel;

• Many more possible.

6

Combination Meta-Constraints

• Allow us to treat a set of constraints as a single constraint;

• Ubiquitous operation in constraint processing algorithms;

• Very useful abstraction; shown here is pseudocode to find
the value of a set of constraints C under an instantiation of
the variables η, with and without the combination abstraction:

a← (
⊗

C)η

a← 1
for all c ∈ C do

a← a× cη

end for
With combination Without combination

7

Implementation by Compilation

x y x−
2
3y

1
2

1 1 1
1 2 1.414
1 3 1.732
1 4 2
2 1 0.63
2 2 0.891
2 3 1.091
2 4 1.26
3 1 0.481
3 2 0.68
3 3 0.833
3 4 0.961
4 1 0.397
4 2 0.561
4 3 0.687
4 4 0.794

⊗

y z z
2
3y−

3
2

1 1 1
1 2 1.587
1 3 2.08
1 4 2.52
2 1 0.354
2 2 0.561
2 3 0.735
2 4 0.891
3 1 0.192
3 2 0.305
3 3 0.4
3 4 0.485
4 1 0.125
4 2 0.198
4 3 0.26
4 4 0.315

=

x y z x−
2
3y

1
2 + z

2
3y−

3
2

1 1 1 2
1 1 2 2.587
1 1 3 3.08
1 1 4 3.52
1 2 1 1.768
1 2 2 1.975
1 2 3 2.15
1 2 4 2.305
1 3 1 1.925
1 3 2 2.038
1 3 3 2.132
1 3 4 2.217
1 4 1 2.125
1 4 2 2.198
1 4 3 2.26
1 4 4 2.315
2 1 1 1.63
2 1 2 2.217
2 1 3 2.71
2 1 4 3.15
2 2 1 1.244
2 2 2 1.452
2 2 3 1.626
2 2 4 1.782
2 3 1 1.284
2 3 2 1.397
2 3 3 1.491
2 3 4 1.576
2 4 1 1.385
2 4 2 1.458
2 4 3 1.52
2 4 4 1.575
3 1 1 1.481
3 1 2 2.068
3 1 3 2.561
3 1 4 3.001
3 2 1 1.033
3 2 2 1.241
3 2 3 1.415
3 2 4 1.571
3 3 1 1.025
3 3 2 1.138
3 3 3 1.233
3 3 4 1.318
3 4 1 1.086
3 4 2 1.16
3 4 3 1.222
3 4 4 1.276
4 1 1 1.397
4 1 2 1.984
4 1 3 2.477
4 1 4 2.917
4 2 1 0.915
4 2 2 1.122
4 2 3 1.297
4 2 4 1.452
4 3 1 0.88
4 3 2 0.993
4 3 3 1.088
4 3 4 1.172
4 4 1 0.919
4 4 2 0.992
4 4 3 1.054
4 4 4 1.109

c1 c2 c1⊗ c2

8

Implementation by Evaluation
x y x−

2
3y

1
2

1 1 1
1 2 1.414
1 3 1.732
1 4 2
2 1 0.63
2 2 0.891
2 3 1.091
2 4 1.26
3 1 0.481
3 2 0.68
3 3 0.833
3 4 0.961
4 1 0.397
4 2 0.561
4 3 0.687
4 4 0.794

⊗

y z z
2
3y−

3
2

1 1 1
1 2 1.587
1 3 2.08
1 4 2.52
2 1 0.354
2 2 0.561
2 3 0.735
2 4 0.891
3 1 0.192
3 2 0.305
3 3 0.4
3 4 0.485
4 1 0.125
4 2 0.198
4 3 0.26
4 4 0.315

= c1η ×s c2η

c1 c2 c1⊗ c2

• Instead of compiling the combination constraint (exhaustively
iterating through the cross product of the variables involved,
computing the value of each instantiation when evaluated un-
der each constraint, combining the values and storing the re-
sult), simply store the constraints involved and evaluate as
required.

9

Lazy Evaluation

Algorithm 1 CombinationEvaluate(η)
a←1
for all c ∈ C do

a← a× cη

if a = 0 then
return 0

end if
end for
return a

10

Compilation vs Evaluation
Criteria Compilation Evaluation
Time to allocate Exponential Linear
Space required Exponential Linear
Lookup Time Constant Linear

• Dynamic constraints very problematic for compilation - re-
quires a complex update procedure at best; no effect on
evaluation-based (as we store the constraints, not values);

11

Empirical Evaluation

• Generated random Fuzzy (binary) CSPs with 7 variables, 5
domain value and with density 1.0. 50-fold cross validation of
results;

• Count the number of constraint evaluations required to find
the set of best solutions to these problems, i.e. the set of in-
stantiations with the best semiring value when evaluated over
the entire problem;

• Report results on problems with varying tightness.

12

Results

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 2e+06

 0 0.2 0.4 0.6 0.8 1

N
um

be
r o

f C
on

st
ra

in
t E

va
lu

at
io

ns

Tightness

Evaluation
Compilation

• Compilation never outperforms evaluation;

• Time decreases for compilation due to lazy evaluation.

13

Conclusions

• Meta-constraints are a very useful abstraction;

• Any algorithm which utilises compilation-based meta-
constraints will have exponential time and space complexity;

• In short, compilation of meta-constraints results in the com-
putation and storage of a great deal of information which may
not be necessary for a given task.

14

