
Giampaolo Bella, Stefano Bistarelli,

Simon N. Foley and Barry O’Sullivan (Eds.)

Applications of Constraint
Satisfaction and Programming
to Computer Security
Problems

First International Workshop
Sitges, Spain, 1st October 2005
Proceedings

Held in conjunction with the
Eleventh International Conference on
Principles and Practice of
Constraint Programming (CP 2005)

Preface

Constraint satisfaction and programming is emerging as an effective practical
approach for solving large complex problems. It offers a significant body of suc-
cessful techniques for verifying system properties. Recently, researchers have
begun using advances in constraint programming and solving to solve security
problems, with success. This workshop seeks to act as a catalyst for this emerg-
ing area by exploring the challenges and the potential that these techniques may
offer when applied to security problems.

The use of constraint satisfaction and programming to address security problems
is recent, and it has already produced a number of novel solutions and insights.
For example, constraints have been successfully used in the the analysis of secu-
rity protocols, the development of access control models and mechanisms, firewall
configuration and secure system configuration in general.

The workshop aim was to provide a forum where researchers working in the area
of security and constraints could discuss their most recent ideas and develop-
ments and think together about the most promising new directions. Therefore,
we encouraged the presentation of work in progress or on specialized aspects of
the area. Papers that bridge the gap between theory and practice were especially
welcome.

This volume contains five contributed papers, the abstract of an invited talk
given by Yannick Chevalier, and the abstract of a demonstration given by Fred
Spiessens, Yves Jaradin, and Peter Van Roy.

We wish to thank all the authors who submitted papers and demonstrations to
this workshop, the members of the programme committee, the invited speaker,
and the CP-2005 Tutorial and Workshop Chairs, Alan Frisch and Ian Miguel.
We would like to especially acknowledge the financial sponsorship received from
the Istituto di Informatica e Telematica of CNR (Pisa, Italy) to support our
invited speaker.

August 2005 Giampaolo Bella
Stefano Bistarelli

Simon N. Foley
Barry O’Sullivan

Programme Chairs

Organising Committee

Giampaolo Bella – Università di Catania, Italy
Stefano Bistarelli – Università degli studi ”G. D’Annunzio” di Chieti-Pescara
and IIT-CNR, Italy
Simon N. Foley – University College Cork, Ireland
Barry O’Sullivan – Cork Constraint Computation Centre, Ireland

Programme Committee

Giampaolo Bella – Università di Catania, Italy
Stefano Bistarelli – Università degli Studi ”G. d’Annunzio” di Chieti-Pescara,
and IIT-CNR, Italy
Yannick Chevalier – Université Paul Sabatier, France
Giorgio Delzanno – Università di Genova, Italy
Alessandra Di Pierro – University of Pisa, Italy
Fabio Fioravanti – Università degli Studi ”G. D’annunzio”, Pescara, Italy
Simon Foley – University College Cork, Ireland
John Herbert – University College Cork, Ireland
Fabio Martinelli – Istituto di Informatica e Telematica, CNR, Pisa, Italy
Barry O’Sullivan – Cork Constraint Computation Centre, Ireland
Justin Pearson – Uppsala University, Sweden
Michael Rusinowitch – INRIA Lorraine, France
Vitaly Shmatikov – University of Texas at Austin, USA
Fred Spiessens – U.C.L. Louvain-la-Neuve, Belgium
Garret Swart – IBM Research, USA
Peter Van Roy – Catholic University of Louvain, Belgium
Luca Vigano – ETH, Zurich, Switzerland
Duminda Wijesekera – George Mason University, USA
Herbert Wiklicky – Imperial College London, UK

Sponsorship

Istituto di Informatica e Telematica, CNR Pisa, Italy.

ii

Table of Contents

I Invited Paper

From Cryptographic Protocol Analysis to Constraint Solving 1

Yannick Chevalier

II Demonstration

Demo: A CCP based Tool to Analyze Patterns of Authority
Propagation and Confinement . 2

Fred Spiessens, Yves Jaradin, and Peter Van Roy

III Contributed Papers

PS-LTL for Constraint-based Security Protocol Analysis 3

Ricardo Corin, Ari Saptawijaya, and Sandro Etalle

Masquerade Detection Using IA Network . 18

Subrat Kumar Dash, Sanjay Rawat, G. Vijaya Kumari, and Arun K.
Pujari

Distributed CLP Clusters as a Security Policy . 31

Saket Kaushik, Dumida Wijesekera, William Winsborough, Paul
Ammann

Heuristics for enforcing security constraints . 46

Flemming Nielson and Hanne Riis Nielson

Using Constraints To Analyze And Generate Safe Capability Patterns . . . 61

Fred Spiessens, Yves Jaradin, and Peter Van Roy

iv

From Cryptographic Protocol Analysis
to Constraint Solving

Yannick Chevalier
ychevali@irit.fr

Universit́e Paul Sabatier Toulouse 3
Toulouse, France

Abstract. The security of distributed systems such ase-commerce, virtual pri-
vate networks,e-administration. . . heavily depends on the possibility of securely
transferring data over an insecure medium. This is the role of cryptographic pro-
tocols, which have been intensively studied during the past years. This line of
research was fruitful since, during the AVISPA project, several flaws were de-
tected by an automated analysis of industrial-scale protocols [1].
In particular we will consider the Human Equivalent Privacy properties of au-
thentication and secrecy. We will first present how the search on a violation of
these properties can be reduced to the satisfiability of some specially constructed
reachability problems. After having presented the most important results in this
area, we will present a result obtained in a joint work with M. Rusinowitch [2]
on the combination of such problems and the application to the decidability and
complexity of protocol analysis.
We will also discuss the shortcomings of this approach with respect to crypto-
graphically sound proofs, and present the AVISPA tool for automated protocol
analysis in the case of perfect cryptography assumption.

Acknowledgement

This work was partially supported by the CNRS ACI Jeunes Chercheurs JC 9005 and
the Shared Cost RTD (FET open) AVISPA1 project funded by the Information Society
Technologies programme of the European Commission, as IST-2001-39252.

References

1. Alessandro Armando, David Basin, Yohann Boichut, Yannick Chevalier, and al Et. The
AVISPA Tool for the Automated Validation of Internet Security Protocols and Applications .
In Etessami Kousha and Rajamani Sriram, editors,Computer-Aided Verification , Edinburgh,
Scotland, UK, pages 1–5. Springer-Verlag, 06-10 juillet 2005.

2. Y. Chevalier and M. Rusinowitch. Combining Intruder Theories. In L. Caires, G. F. Italiano,
and L. et al. Monteiro, editors,Automata, Languages and Programming: 32nd International
Colloquium, ICALP 2005, pages 639–651, Lisbon, Portugal, July 2005.

1 http://www.avispa-project.org/

Proceedings of CPSec 2005

1 of 75

Demo: A CCP based Tool to Analyze Patterns
of Authority Propagation and Confinement

Fred Spiessens, Yves Jaradin, and Peter Van Roy

Université catholique de Louvain
Louvain-la-Neuve, Belgium

{fsp,yjaradin,pvr}@info.ucl.ac.be

Abstract. We demonstrate a CCP based tool for analyzing authority
propagation and confinement in patterns of collaborating entities. Such
analysis is important because it reveals the boundary conditions in which
the pattern is safe to use. The domain specific language ”SCOLL” [JSV05]
(Safe Collaboration Language) will be introduced and used to model the
restricted behavior of the trusted subjects in a pattern. The model is con-
cerned only with the authority-propagating aspects of behavior: in what
circumstances will the trusted subject collaborate with another subject,
will it accept authority propagated during this collaboration, and what
authority (if any) will it provide to the collaborating subject. The model
itself is an expressive extension of classical Take-Grant systems.
We first show how the tool calculates a safe but precise approximation
to the maximal authority propagation in a pattern. Then we show the
more powerful way of using the tool: to calculate maximally collaborative
behavior for any trusted subject in a pattern, while respecting a given
set of requirements on the global confinement of authority. We present
some interesting patterns of collaboration and calculate and discuss the
maximal behavior they allow for their key role subjects.
We discuss the future extension of the tool with semi-automatic deriva-
tion of behavior from code, providing a domain specific alternative for
abstract interpretation and a developer aid for secure programming. Mo-
deling collaborative behavior based on real code makes sense if the code
is written in a capability secure language, because then authority can
only become available through collaborative propagation (delegation).

Acknowledgments

This work was partially funded by the EVERGROW project in the sixth Frame-
work Programme of the European Union under contract number 001935, and by
the MILOS project of the Walloon Region of Belgium under convention 114856.

References

[JSV05] Yves Jaradin, Fred Spiessens, and Peter Van Roy. SCOLL : A Language
for Safe Capability Based Collaboration Paper submitted to POPL’06., 2005.
Available at: http://www.info.ucl.ac.be/∼yjaradin/SCOLL.pdf.

Proceedings of CPSec 2005

2 of 75

PS-LTL for Constraint-based Security Protocol

Analysis

Ricardo Corin, Ari Saptawijaya, and Sandro Etalle

Department of Computer Science, University of Twente, The Netherlands

Abstract. We introduce PS-LTL (pronounced pastel), a pure-past security
linear temporal logic. PS-LTL allows one to specify several security properties
including data freshness and different notions of authentication and secrecy.
We give semantics and further propose a procedure to decide validity of pro-
perties for finite (albeit symbolic) execution traces, for a relevant subset of
PS-LTL (which includes all the mentioned properties). Our procedure is easily
integrated with constraint-based protocol analysis approaches. We also provide
a Prolog implementation.

1 Introduction

Despite their apparent simplicity, the correct design of security protocols is known to
be a challenging task, and tools based on formal methods (e.g. [4, 21, 20, 18, 12]) are
often used to debug and verify protocols before their deployment. Most of these tools
are state-based: an abstract version of the protocol is run in presence of the so-called
Dolev-Yao [14] intruder who has complete control over the network. By exhaustive
search, one can establish whether the protocol is flawed or not. In addition, tools based
on forward search [23, 18, 7, 12] (as opposed to those employing backward search, like
[20, 3]) can be regarded as true engineering tools, as they can be used for simulating,
rapid prototyping and debugging of security protocols. Here, limiting the search space
explosion due to the intruder’s behaviour is a central issue, which can be dealt with
elegantly and effectively by using constraint solving: instead of generating all possible
traces of the systems, the tool produces only a finite number of symbolic traces,
in which constrained variables are used in place of the messages generated by the
intruder. Each symbolic trace stands for a (possibly infinite) set of concrete traces.
Originally proposed by Millen and Shmatikov [23], this now popular method was later
improved and extended in [7, 1, 11].

Unfortunately, constraint-based verification systems are poor when it comes to
specifying the properties one wants to check. For example, checking authentication
is done in an ad-hoc manner, by e.g. adding a protocol participant but not its corre-
sponding party, and observing whether the participant can still finish its run. This is
coarse-grained, and cumbersome to implement (besides this, only a built-in notion of
authentication is implemented by Millen [22] in his Prolog implementation). Checking
secrecy is also ad-hoc, by adding an artificial protocol role which expects a secret no
other participant would send. As we shall see, when secrecy is an atomic predicate
being part of a language, more interesting properties can be stated about secrecy.

Contributions We propose a language to specify security properties, based on linear
temporal logic (LTL) with pure-past operators. As we shall see, PS-LTL provides flex-
ibility, allowing one to specify several security properties like authentication ([18, 10])

Proceedings of CPSec 2005

3 of 75

(including aliveness, weak agreement and non-injective agreement), secrecy (standard
secrecy [2] and perfect forward secrecy [13]) and also data freshness. The semantics
of PS-LTL is defined on concrete (variable-free) traces, but we introduce a decision
procedure which allows one to check a relevant subset of PS-LTL on the symbolic
traces produced by our tool [7]. This fragment is expressive enough to cover all the
considered security properties. We show that the decision procedure is correct wrt
the concretization function, which maps a symbolic trace to all the valid traces it
represents. We have incorporated a PS-LTL interpreter into our protocol verification
tool [7] thereby providing a full verification system (an online demo is available [8]).
The Prolog code together with the proofs that did not fit in this version can be found
in an extended version of this paper [9].

To the best of our knowledge, in the context of constraint-based methods, this is
the first language for the specification of security properties which is equipped with
a sound procedure for evaluating formulas against a symbolic trace.

Related Work In previous work [6] we study local security properties. PS-LTL pro-
vides more powerful temporal operators (e.g. the yesterday Y and since S operators),
which in turn allows the writing of more expressive security properties. Besides that
work, PS-LTL is inspired by the successful and elegant NPATRL logic [24]. As shown
in subsequent work [21], NPATRL is strictly less powerful than LTL; also in that paper
it is mentioned that the implementation of NPATRL to NRL Protocol Analyzer [20]
presents difficulties (e.g. the inability to mention several learn’s in the same formula,
a restriction we do not impose). Further examination is required to better compare
NPATRL and our logic.

Our treatment of pure-past LTL is an adaptation of Havelund and Rosu [16].
We provide a different semantics, tailored for security and constraint solving, but also
include a different definition for the temporal operator historically H, which we believe
preserves better the faithfulness to standard LTL.

Finally, we use special flags like run and end that indicate an agent is running and
completing the protocol, respectively. They are useful to later specify authentication
properties as correspondence assertions à la Gordon and Jeffrey [15].

2 Preliminaries

In this section we introduce the basic elements we need in the rest of the paper.
We first introduce our term algebra and intruder deduction rules, then the protocol
model.

Term Algebra Messages are represented as terms in a free algebra generated by the
operators in Table 1 (left), from a set of variables V (denoted by uppercase letters
A,B,Na,K, ...), and a set of constants C (denoted by lowercase a, b, na, k, ...), rep-
resenting the agent identities, nonces (ie. random values) and keys. We use a special
constant e ∈ C to denote the intruder’s identity. We have pairing, public keys and
(symmetric/asymmetric) encryption. We assume that private keys are never part of
messages, and so they are never leaked. The set of ground terms is denoted by T +.
When t ∈ T +, we say that t is ground, otherwise it is non-ground. Substitutions (de-
noted by σ, ρ, ...) are finite mappings from V to T ; Ground substitutions map V to
T +. Given v ∈ V and t ∈ T , [t/v] denotes the singleton substitution mapping of v to
t. The variables of a term t are denoted as var(t). A term t′ is an instance of another

Proceedings of CPSec 2005

4 of 75

term t if there is a substitution σ s.t. t′ = tσ. The same terminology is used for the
(later introduced) events, protocol roles and traces.

t1, t2 ::= c constant in C {t1, t2} →pair {(t1, t2)}
v variable in V {(t1, t2)} →first {t1}
pk(t1) public key {(t1, t2)} →second {t2}
(t1, t2) pair {t} →hash {h(t)}
h(t1) hash {t1, t2} →senc {{t1}t2}
{t1}t2 symmetric encryption {{t1}t2 , t2} →sdec {t1}
{t1}

→

t2
asymmetric encryption {t1, t2} →penc {{t1}

→

t2
}

{{t1}
→

pk(e)} →pdec {t1}

Table 1. Left: Grammar for terms. Right: DY rules.

DY Rules Rules are used to represent the abilities of the intruder, in the style of
Dolev-Yao. Let A and B be two sets of terms, and let ℓ be a rule label, representing
the name of the rule. A rule is denoted by A →ℓ B. We work with the set of rules
given in Table 1 (right). As usual, the attacker is allowed to pair and split terms,
hash, symmetrically encrypt terms with any (possibly non-atomic) key and decrypt
symmetrically if the key is known to the attacker. Public-key encryption (penc) is
modelled by allowing to encrypt with any key. Then, rule pdec models asymmetric
decryption of a term encrypted with the attacker’s public key. The attacker cannot
decrypt any term encrypted with a different public key than his own, since we assume
that private keys are not leaked.

We now define F(T), representing the terms the intruder can generate from the
term set T :

Definition 1. Let T be a ground term set, and let fℓ be a set operator defined as
fℓ(T) = T ∪ B when A ⊆ T and A →ℓ B is a DY rule. Then, F(T) denotes the
smallest set that contains T and is closed wrt fℓ for all rule ℓ.

Protocol Model Our protocol model is related to the strand-space formalism [25],
although we sometimes use a different terminology, e.g. we call system scenario what
in strand-spaces is called a semibundle. In the following, we introduce events, traces,
protocol roles, and system scenarios.

Definition 2. An event is one of the following:

– A communication event: a pair 〈a : m ⋄ b〉 where a, b are variables or agent con-
stants, ⋄ ∈ {⊳, ⊲} and m is a term. a is called the active party, and b is the passive
party. The event 〈a : m ⊲ b〉 reads as “agent a sends message m with intended
destination b”. Symmetrically, 〈a : m⊳ b〉 stands for “agent a receives message m
apparently from b”.

– A status event: p(D1, · · · , Dn), with Di a term for i ∈ [1..n] and p is a function
symbol.

Example 3. The following are examples of communication and status events:

Proceedings of CPSec 2005

5 of 75

– 〈a : (a, na) ⊲ B〉 is a communication event in which agent a sends pair (a, na)
to another agent B. Being B a variable (rather than a constant b), this event
represents any concrete communication event 〈a : (a, na) ⊲ c〉 for any agent c. In
other words, B is still undetermined.

– 〈b : (A,NA) ⊳ A〉 is a communication event in which agent b receives the pair
(A,NA) from another agent A. Similarly, because of the presence of variables A
and NA, this stands for any concrete event 〈b : (c, n) ⊳ c〉 for any agent c and any
term n.

– run(a,B, initiator, na, klt,Ksk) is a status event, used typically as a flag to in-
dicate that agent a has been running a protocol as an initiator apparently with
(a still unspecified) B agreeing on some data na, klt, and Ksk. The meaning of
variables are similar as in previous examples. Similarly, we use an end status event
to indicate an agent finishing an execution. �

A trace is a finite sequence of events, with the empty trace denoted as 〈〉. Append-
ing an event ev to trace tr is written 〈tr ev〉. Functions last and length have the usual
meaning: last(〈tr ev)〉 = ev (last is undefined for the empty trace), length(〈〉) = 0
and length(〈tr ev〉) = length(tr) + 1. The prefix trace consisting of the first i events
is denoted as tri, with tr0 = 〈〉 and trm = tr for m ≥ length(tr).

Definition 4. A protocol role is a trace in which all events share the same active
agent.

Given a protocol written in standard ‘A → B : M ’ notation, it is straightforward
to obtain its parametric protocol roles, as shown in the next example.

Example 5. Consider the BAN Concrete Andrew Secure RPC protocol [4], with the
last message stripped out, since it is not necessary for security.

1. a → b : (a, na)

2. b → a : {(na, kst)}klt

3. a → b : {na}kst

First a sends a message with her identity and a fresh nonce na. Upon receipt, b
generates a short term session key kst, encrypts it along with a’s nonce na using the
long-term key klt, shared previously with a. Finally, a replies with her nonce na en-
crypted with the newly established key kst. In the following, we name protocol roles
such as init, and resp, denoting an initiator and a responder respectively. The para-
metric protocol roles are then:

init(A, B, NA, Klt, Kst) = 〈 〈A : (A, NA) ⊲ B〉〈A : {(NA, Kst)}Klt
⊳ B〉

run(A, B, initiator, NA, Klt, Kst) 〈A : {NA}Kst
⊲ B〉

end(A,B, initiator, NA, Klt, Kst) 〉
resp(A, B, NA, Klt, Kst) = 〈 〈B : (A,NA) ⊳ A〉 run(B, A, responder,NA, Klt, Kst)

〈B : {(NA, Kst)}Klt
⊲ A〉 〈B : {NA}Kst

⊳ A〉
end(B,A, responder,NA, Klt, Kst) 〉 �

The instantiation of a parametric protocol role gives another protocol role. The next
step consists of gathering several protocol roles together, which provides a particular
system instance.

Definition 6. A system scenario is a multiset of protocol roles.

Proceedings of CPSec 2005

6 of 75

A system scenario determines which sessions are present, and which agents play
which roles.

Example 7. Consider the following simple system scenario, where init and resp are
the roles defined in Example 5: This scenario is obtained by partially instantiating
the above roles. The initiator is played by a, using fresh nonce na and shared key klt,
while the responder is b, using a fresh session key kst. �

We further require that each protocol role in a system scenario satisfies the origi-
nation assumption: all uninstantiated variables need to occur in a receive event before
they occur in a send event or a status event (see [23] for details).

Intruder’s knowledge and valid traces Let S be a system scenario. We say that S′ is
a subscenario of S if for every role r′ ∈ S′ there is a role r ∈ S s.t. r′ is a prefix of r.
We then say that a trace tr is derived from S if there exists an instance S′ of S s.t.
tr is an interleaving of a subscenario of S′. When the protocol is executed in presence
of the intruder, we apply the Dolev-Yao model: (a) every message sent by an honest
principal is added to the intruder’s knowledge, and (b) every message received by an
honest principal is produced by the intruder using the knowledge accumulated until
that point. Formally, after the events in tr have taken place, the knowledge of the
intruder is equal to IK ∪ K(tr) where IK is the set of ground terms representing the
initial intruder’s knowledge, and K(tr) = {m | 〈a : m ⊲ b〉 ∈ tr}. IK contains at least
the intruder’s identity e, and may contain other agent identities (a, b, ...) and public
keys or nonces.

Suppose we have a ground trace tr = 〈tr′ ev〉, with ev = 〈a : m ⊳ b〉. By (b)
above, we can say that the event ev in tr is valid if the intruder could produce m
using IK ∪K(tr′). A whole trace is valid when all its receive communication events
are valid, as shown in the next definition.

Definition 8. A ground trace tr is valid wrt IK if tr is empty, or for each i ∈
[0, length(tr) − 1]:

last(tri+1) = 〈a : m ⊳ b〉 implies that m ∈ F(K(tri) ∪ IK)

This validity notion allows us to understand what a symbolic (i.e. non-ground) trace
represents, namely all its valid instances. Given a (symbolic) trace tr and a set of
ground terms IK, we let:

V (tr, IK) = {tr′ | tr′ is a valid trace wrt IK, and tr′ is an instance of tr}

3 Constraint Solving

To analyze a protocol, we execute a system scenario together with an intruder with
the abilities of the DY rules, using a set of constraints. A constraint is a pair m : K,
of a term m and a term set K (standing for knowledge). A constraint is called simple
if m is a variable, ie. m ∈ V . A constraint set CS is a finite set of constraints; CS is
simple if each constraint in the set is simple.

Definition 9. Let CS = {mi : Ki} be a constraint set, and let σ be a ground substi-
tution for all the variables in CS. We say that σ is a solution of CS if for each i,
miσ ∈ F(Kiσ). We also say that CS is solvable if there exists at least one solution σ
of CS. A partial solution γ of CS is a substitution s.t. dom(γ) ⊆ var(CS), and CSγ
is solvable.

Proceedings of CPSec 2005

7 of 75

Recall that e ∈ IK (the intruder knows its own name initially). In the sequel,
we consider only constraints m : K in which IK ⊆ K. This implies that a simple
constraint is always solvable: the mapping σ(vi) = e is always a solution of the
simple constraint vi : Ki. Millen and Shmatikov’s reduction algorithm (called P in
the following) [23] reduces a constraint set CS to (possibly empty set of) pairs of
simple constraint sets CS′ and substitutions γ. Millen and Shmatikov’s result is:

Theorem 10 ([23]). (a) P always terminates. (b) Soundness: If P applied to CS
outputs (CS′, γ), then γ is a partial solution of CS, and every solution of CS′ is also
a solution of CSγ. (c) Completeness: If CS is solvable with solution σ, then applying
P to CS returns some (CS′, γ) such that, for some solution σ′ of CS′, σ = γσ′.

We now describe an algorithm which –given a system scenario S and initial in-
truder’s knowledge IK– non-deterministically produces a set of symbolic traces, as
described in [7]. This algorithm is based on [23], but instead of considering every com-
plete interleaving of events, as described in [23], we incrementally add events during
an execution, checking that the constraint set remains solvable. This procedure results
in a significant efficiency gain wrt the original procedure. In the following we extend
the original procedure by considering the new status events introduced in Definition
2.

Procedure 11. A state is a 4-tuple 〈S, IK, CS, tr〉, where S is a system scenario, IK
is the initial intruder’s knowledge, CS is a simple constraint set and tr is a (possibly
non-ground) trace. A step from state 〈S, IK, CS, tr〉 to 〈S′, IK, CS′, tr′〉 is obtained by
performing the following:

– Choose non-deterministically a non-empty role r ∈ S. Let r = 〈ev r′〉. Consider
the following cases for ev:

1. If ev is a status or a send communication event, let γ be the empty substitution
and CS′′ be CS.

2. If ev is a receive communication event, ie. ev = 〈a : m ⊳ b〉, check if the
intruder can generate m using the knowledge K(tr)∪IK, by applying procedure
P to CS ∪ {m : (K(tr) ∪ IK)}. If it is solvable, we obtain a new simple
constraint set CS′′ and a partial solution γ (As there may be many CS′′ and
γ, this step may result in branching).

– Let S′ := (S \ {r} ∪ {r′})γ, CS′ := CS′′ and tr′ := 〈 trγ evγ 〉.

A run for S (with initial intruder’s knowledge IK) is a sequence of steps, starting
from state 〈S, IK, ∅, 〈〉〉.

It is easy to see that this procedure terminates, since system scenarios are finite,
and procedure P only outputs a finite number of partial solutions. Moreover, from
Theorem 10 it follows that this procedure is correct and complete.

Proposition 12. For Procedure 11, it holds:

1. Soundness: Let 〈S′, IK, CS, tr〉 be a state in a run for S with initial intruder’s
knowledge IK. Then for every solution σ of CS, trσ is valid wrt IK and trσ is
derived from S.

2. Completeness: Let tr be a valid trace wrt IK derived from S. Then there exists a
state 〈S′, IK, CS, tr′〉 in a run for S wrt IK and a subtitution σ s.t. σ is a solution
of CS and tr = tr′σ.

Proceedings of CPSec 2005

8 of 75

4 PS-LTL

We now introduce our language for writing security properties. Then we provide a
semantics, in the form of concrete and symbolic validity.

Definition 13. A PS-LTL formula is defined by the following grammar:

φ ::= true | false | p(d1, ..., dn) | learn(m) | ¬φ | φ ∧ φ | φ ∨ φ | ∃v.φ |
∀v.φ | Yφ | φSφ

where each di (i ∈ [1, n]) and m are either variables in V or ground terms in T +.

Standard formulas true, false, ¬φ, φ ∧ φ, φ ∨ φ carry the usual meaning. Formula
p(d1, ..., dn) is a status event. learn(m) is a predicate stating that the intruder knows
term m (we borrow the name from NPATRL [24]). Yφ means ‘yesterday φ held’, while
φ1Sφ2 means that ‘φ1 held ever since a moment in which φ2 held’. When v ∈ V ,
we write ∃v.φ and ∀v.φ to bind v in φ; v represents terms. Other operators can be
represented using the above defined operators: φ1 → φ2 is defined as ¬φ1∨φ2; Oφ (once
φ) is a shorthand for true S φ and finally Hφ (historically φ) is a shorthand for ¬O¬φ.
For clarity, we impose a precedence hierarchy for operators: unary operators bind
stronger than binary operators. Operators Y, O, and H bind equally strong and bind
stronger than ¬. The precedence hierarchy for binary operators is S > ∧ > ∨ >→,
where op1 > op2 means “op1 binds stronger than op2”. In the sequel, we assume that
PS-LTL formulas are closed (ie. they contain no free variables), and that each variable
is quantified at most once (this can always be achieved using alpha conversion).

Our semantics 〈tr, IK〉 |= φ is defined for two different cases: First, we define it
when tr is a ground trace, which we call concrete validity. Then, we extend it to the
general case, in which tr may be symbolic. This establishes symbolic validity.

Definition 14 (Concrete validity).
Let φ be a closed PS-LTL formula, tr be a ground trace and IK be an initial

intruder’s knowledge. We then define 〈tr, IK〉 |= φ as:

〈tr, IK〉 |= true and 〈tr, IK〉 6|= false

〈tr, IK〉 |= p(d1, . . . , dn) iff tr = 〈tr′ ev2〉 and p(d1, . . . , dn) = ev2
〈tr, IK〉 |= learn(m) iff m ∈ F(K(tr) ∪ IK)
〈tr, IK〉 |= ¬ϕ iff 〈tr, IK〉 6|= ϕ
〈tr, IK〉 |= ∃v.ϕ iff ∃t ∈ T + : 〈tr, IK〉 |= ϕ[t/v]
〈tr, IK〉 |= ∀v.ϕ iff ∀t ∈ T + : 〈tr, IK〉 |= ϕ[t/v]
〈tr, IK〉 |= ϕ1 ∧ ϕ2 iff 〈tr, IK〉 |= ϕ1 and 〈tr, IK〉 |= ϕ2

〈tr, IK〉 |= ϕ1 ∨ ϕ2 iff 〈tr, IK〉 |= ϕ1 or 〈tr, IK〉 |= ϕ2

〈tr, IK〉 |= Yϕ iff tr = 〈tr′ ev〉 and 〈tr′, IK〉 |= ϕ
〈tr, IK〉 |= ϕ1Sϕ2 iff ∃i ∈ [0, length(tr)] : (〈tri, IK〉 |= ϕ2 ∧

∀j ∈ [i+ 1, length(tr)] : 〈trj , IK〉 |= ϕ1)

Given our PS-LTL semantics, we can confirm our definitions for O and H.

Proposition 15. For every trace tr, IK and closed PS-LTL formula φ, (i) 〈tr, IK〉 |=
Oφ iff ∃i ∈ [0, length(tr)] : 〈tri, IK〉 |= φ, and (ii) 〈tr, IK〉 |= Hφ iff ∀i ∈ [0, length(tr)] :
〈tri, IK〉 |= φ.

In fact, we can also state and prove other standard results for LTL and infinite
traces, like the tautology Hφ → Oφ. Furthermore, we can state some particular rela-
tions of PS-LTL :

Proceedings of CPSec 2005

9 of 75

Proposition 16. For every trace tr, IK and message m: (i) 〈tr, IK〉 |= learn(m)
iff 〈tr, IK〉 |= O learn(m) iff 〈tr, IK〉 |= learn(m) S learn(m), and (ii) 〈tr, IK〉 |=
Y learn(m) implies 〈tr, IK〉 |= learn(m).

The proposition intuitively shows that the intruder never forgets information, and
it follows from the monotonicity of F(·), ie. F(K(tri) ∪ IK) ⊆ F(K(trj) ∪ IK) for
each i ≤ j.

Concrete validity is defined wrt ground traces. Therefore, to find a particular
trace representing an attack, we would need to enumerate all possible ground traces
derived from a scenario, which are infinitely many. To cope with this, in the sequel
we introduce a method for checking validity wrt a symbolic trace, which represents
(infinitely) many concrete traces.

Definition 17 (Symbolic validity). Given a trace tr derived from a system sce-
nario S and IK, we say that 〈tr, IK〉 |= φ iff ∀tr′ ∈ V (tr, IK) : 〈tr′, IK〉 |= φ.

5 Checking Symbolic Validity in Constraint Solving

Let ϕ be a closed PS-LTL formula representing a security property. We let Aϕ = ¬ϕ
be its corresponding attack property. Given a symbolic trace tr and IK, we define a
procedure D that tries to find a ground instance tr′ of tr s.t. 〈tr′, IK〉 |= Aϕ. If D
succeeds, tr′ represents a violation of ϕ (hence an attack), since 〈tr′, IK〉 |= Aϕ iff
〈tr′, IK〉 6|= ϕ, and thus 〈tr, IK〉 6|= ϕ. On the other hand, if D fails, then we know that
there is no tr′ s.t. 〈tr′, IK〉 |= Aϕ. In other words, for every ground instance tr′ of tr,
〈tr′, IK〉 |= ϕ, i.e., 〈tr, IK〉 |= ϕ. Thus D decides symbolic validity.

Our approach consists of two stages. We first translate a closed PS-LTL formula
φ into an elementary formula EF, using a transformation T . Then, we input the
translated formula to the decision procedure D.

Definition 18. Elementary formulas EF (ranged over by π) are defined by the gram-
mar:

π ::= true | false | t1 = t2 | m : K | ¬π | π ∧ π | π ∨ π | ∃v.π | ∀v.π

Here t1, t2 and m are either variables or ground terms, K is a set of terms and v is a
variable.

Let π be an EF formula. Then we define its left free variables freel(π) and its
right free variables freer(π), as follows:

freel(true) = freel(false) = ∅
freel(t1 = t2) = var(t1)
freel(m : K) = var(m)
freel(¬π) = freel(π)
freel(π1 ∧ π2) = freel(π1 ∨ π2) = freel(π1) ∪ freel(π2)
freel(∃v.π) = freel(∀v.π) = freel(π) \ {v}

freer(π) is similar, but with: freer(t1 = t2) = var(t2) and freer(m : K) = var(K).
We now give a semantics of an EF formula π wrt. a ground substitution σ.

Definition 19. Let freel(π) = ∅ and freer(π) = dom(σ). Then σ |=′ π is defined
by:

Proceedings of CPSec 2005

10 of 75

σ |=′
true and σ 6|=′

false

σ |=′ t1 = t2 iff t1 = t2σ
σ |=′ m : K iff m ∈ F(Kσ)
σ |=′ π1 ∧ π2 iff σ |=′ π1 and σ |=′ π2

σ |=′ π1 ∨ π2 iff σ |=′ π1 or σ |=′ π2

σ |=′ ∃v.π iff ∃t ∈ T + : σ |=′ π[t/v]
σ |=′ ∀v.π iff ∀t ∈ T + : σ |=′ π[t/v]

5.1 First Stage: T (φ, tr, IK)

We define a translation T (φ, tr, IK) from a PS-LTL formula φ, a trace tr and an
initial intruder’s knowledge IK into an EF formula:

Definition 20. T (φ, tr, IK) is an EF formula resulting from applying the following
three steps:

1. First, we repeatedly apply transformation ⌊·⌋·, defined below, until none of the
rules can be applied:

⌊∃v.φ⌋tr ⇒ ∃v.⌊φ⌋tr
⌊∀v.φ⌋tr ⇒ ∀v.⌊φ⌋tr
⌊¬φ⌋tr ⇒ ¬⌊φ⌋tr

⌊φ1 ∧ φ2⌋tr ⇒ ⌊φ1⌋tr ∧ ⌊φ2⌋tr
⌊φ1 ∨ φ2⌋tr ⇒ ⌊φ1⌋tr ∨ ⌊φ2⌋tr

⌊Yφ⌋〈〉 ⇒ false

⌊Yφ⌋〈tr e〉 ⇒ ⌊φ⌋tr
⌊φ1Sφ2⌋〈〉 ⇒ ⌊φ2⌋〈〉

⌊φ1Sφ2⌋〈tr e〉 ⇒ ⌊φ2⌋〈tr e〉 ∨ (⌊φ1⌋〈tr e〉 ∧ ⌊φ1Sφ2⌋tr)
⌊true⌋tr ⇒ true

⌊false⌋tr ⇒ false

⌊learn(m)⌋tr ⇒ m : (K(tr) ∪ IK)
⌊ev⌋〈〉 ⇒ false

⌊p(D1, ..., Dn)⌋〈tr q(E1, ..., Em)〉 ⇒ false if p 6= q or n 6= m
⌊p(D1, ..., Dn)⌋〈tr p(E1, ..., En)〉 ⇒ D1 = E1 ∧ ... ∧Dn = En

2. Repeatedly rewrite atoms ¬¬φ to φ, and move ¬’s inside conjunctions and dis-
junctions using DeMorgan distributive laws.

3. Move ∀ quantifiers as far as possible to the right, and simplify universally quan-
tified formulas over (possibly negated) equalities and constraints, according to the
following rules:

∀v.(φ1 ∧ φ2) ⇒ ∀v.φ1 ∧ ∀v.φ2

∀v.(φ1 ∨ φ2) ⇒ ∀v.φ1 ∨ ∀v.φ2 if v is not free in φ1

or v is not free in φ2

∀v.φ⇒ φ if v is not free in φ
∀v.¬(v = t) ⇒ false

∀v.(v = t) ⇒ false

∀v.(v : K) ⇒ false

∀v.¬(v : K) ⇒ false

One can check that translation T terminates, given a finite trace.
We call an EF formula existential if it is of the form ∃v1...∃vn.ϕ, and ϕ does not

contain any quantifiers (∀ nor ∃). We now define the subset Φ of PS-LTL over which
we are going to decide symbolic validity:

Proceedings of CPSec 2005

11 of 75

Φ
△
= { φ | φ is a closed PS-LTL formula and

T (φ, tr, IK) is existential for every trace tr and IK }

We shall see that Φ is still expressive enough for several interesting security pro-
perties. In particular, every property ϕ considered in Section 6 satisfies Aϕ ∈ Φ.
Examples of φ 6∈ Φ are φ1 = ∀x.∃y.(run(x) ∧ run(y)), for tr1 = 〈〈run(z)〉〉 we have
T (φ1, tr1, IK) = ∀x.∃y.(x = z) ∧ (y = x), and φ2 = ∃x.∀y.(run(x, y) ∨ run(y, x)), for
tr2 = 〈〈run(z, w)〉〉 we have T (φ2, tr2, IK) = ∃x.∀y.((x = z∧y = w)∨(y = z∧x = w))
for any IK.

The following lemma states that the translation T preserves the semantics of PS-
LTL wrt semantics of EF.

Lemma 21. Let φ be a closed PS-LTL formula, tr be a trace and IK be an initial
intruder’s knowledge, and let σ be a substitution such that dom(σ) = var(tr). Then
〈trσ, IK〉 |= φ iff σ |=′ T (φ, tr, IK).

5.2 Second Stage: D(π, CS)

Given an existential EF formula π = ∃v1...∃vn.ϕ, we transform ϕ into its disjunctive
normal form ϕ =

∨
j ψj , with ψj =

∧
i πj,i. ProcedureD(π,CS) tries to find a disjunct

ψj and σ that makes ψj (and therefore ϕ) holds. For simplicity, we assume that each
ψj contains just one positive equality Lj,i = Rj,i, one negative equality ¬(L¬

j,i = R¬

j,i),
one positive constraint mj,i : Kj,i and one negative constraint ¬(m¬

j,i : K¬
j,i). The

generalization to the case with several atomic formulas and with (possibly negated)
true and false atoms is straightforward.

Procedure 22. Let CS be a simple constraint set. Let ψj = (Lj,i = Rj,i) ∧ ¬(L¬

j,i =
R¬

j,i) ∧ (mj,i : Kj,i) ∧ ¬(m¬

j,i : K¬

j,i).

1. Pick a disjunct ψj while possible, otherwise exit and return false.
2. Solve Positive Equality: Take a relevant most general unifier ρ of Lj,i and Rj,i

such that dom(ρ) ⊆ var(Lj,i) ∪ var(Rj,i), ie. Lj,iρ = Rj,iρ (If no mgu exists, go
back to Step 1).

3. Solve Positive Constraint: Apply P to (CS ∪ {mj,i : Kj,i})ρ. Let ρ1, ..., ρl be the
partial solutions.

4. Pick ρk while possible, otherwise go back to Step 1.
5. Solve Negative Constraint: Apply P to (CS ∪ {mj,i : Kj,i,m

¬

j,i : K¬

j,i})ρρk. If it
is solvable, go back to Step 4.

6. Solve Negative Equality: Find a substitution γ s.t. L¬

j,iρρkγ and R¬

j,iρρkγ are
ground and L¬

j,iρρkγ 6= R¬
j,iρρkγ, with (CS ∪ {mj,i : Kj,i})ρρkγ is solvable. If no

γ is found, go back to Step 4.

Step 2 tries to solve the positive equality, finding a suitable unifier ρ. (We need a
unifier and not a matching for the general case of many equalities). In case ρ is not
found, then we can not make the disjunct to hold, so we try a different one going back
to Step 1. Similarly, Step 3 solves the positive constraint. Step 5 checks that both ρ
and ρk make the negative constraint to hold, checking that it is not solvable. Finally,
Step 6 looks for a substitution that solves the negative equality. This step is the most
difficult step to achieve, however checking syntactic equality is enough.

Claim 23. L¬
j,iρρk and R¬

j,iρρk differ syntactically iff there exists γ s.t. L¬
j,iρρkγ and

R¬

j,iρρkγ are ground and L¬

j,iρρkγ 6= R¬

j,iρρkγ, with (CS∪{mj,i : Kj,i})ρρkγ solvable.

Proceedings of CPSec 2005

12 of 75

Since we consider (i) relevant unifiers for Step 2, which are only finitely many, (ii)
P only ouptuts a finite number of solutions for Step 3 and 5, and (iii) by Claim 23 we
only need to perform a syntactic check for Step 6, then we can deduce that procedure
D terminates. The correcteness of D is more challenging to establish.

Lemma 24. Let π = T (φ, tr, IK) be an existential elementary formula and π =
∃v1...∃vn.

∨
j ψj, with ψj =

∧
i πj,i. If D(π,CS) holds, then ∃σ : σ |=′ π, with trσ

valid wrt IK.

Now we are ready to state the main result of this section, which states that applying
the transformation T of Definition 20 and D defined in Procedure 22 is sound.

Theorem 25. Let S be a system scenario, IK be an initial intruder’s knowledge, φ
a closed PS-LTL formula representing a security property, and let Aφ = ¬φ. Let the
system execute to a state 〈S′, IK, CS, tr〉. Assume π = T (Aφ, tr, IK) is existential,
π = ∃v1...∃vn.

∨
j ψj, with ψj =

∧
i πj,i. Then, if 〈tr, IK〉 |= φ, D(π,CS) fails.

Integrating PS-LTL to Constraint Solving We integrate the checking of a closed PS-
LTL formula φ (representing a security property) into the constraint-based protocol
analysis approach described in Procedure 11.

Procedure 26. A state of Procedure 26 is the 5-tuple 〈S, IK, CS, tr, φ〉. Procedure 26
is obtained by adding one more step at the end of Procedure 11:

– Compute π = T (¬φ, tr, IK), and check that π is existential. Evaluate D(π,CS).
If D(π,CS) holds, then the run stops and we output the current (offending) trace
tr. Otherwise, continue the run.

The additional step essentially checks whether tr in the current execution state
can be instantiated to provide a solution of ¬φ, that is, to falsify φ: by Theorem 25,
we know that if D(T (¬φ, tr, IK), CS) holds, then 〈tr, IK〉 6|= φ. In that case, the
procedure terminates and outputs the trace tr that shows an attack. Otherwise, the
procedure proceeds until an attack or no attack is found. Since T and D terminate,
and Procedure 11 terminates, Procedure 26 also terminates.

Implementation We have fully integrated PS-LTL into our previous verifier [7]. An
online demo is available [8]. Essentially we extend the previous implementation by
including the translation T of a PS-LTL formula and the implementation of the
decision procedure D.

6 Writing Security Properties with PS-LTL

In this section we show how to specify several security properties in PS-LTL including
secrecy, freshness and authentication. We have successfully used our tool to check these
properties for some scenarios from our running example. The complete specification
of protocols, scenarios and properties we have tested can be found in [9].

6.1 Authentication

First we specify in PS-LTL various forms of authentication, as defined in [19, 10].
We consider the authentication of an initiator to a responder. The converse case is
similar.

Proceedings of CPSec 2005

13 of 75

Aliveness The aliveness property is the weakest form of authentication in Lowe’s
hierarchy [19]:

A protocol guarantees to a responder A aliveness of another agent B if, whenever A
(acting as responder) completes a run of the protocol, apparently with initiator B,
then B has previously been running the protocol.

Notice that B may have run the protocol with an agent other than A. Moreover,
B may not have been running the protocol recently. The aliveness of agent B to
responder A can be specified in PS-LTL as follows:

∀A,B, D1,D2, D3. ∃A′, R′, D1′, D2′, D3′.

end(A, B, responder,D1, D2, D3) → O run(B, A′, R′, D1′, D2′, D3′)

We can check the aliveness property for our running example on a scenario S1

containing one initiator role and one responder role running in two different sessions:

S1 = {init(a, b, na, klt,Kst), resp(b, a,Nb, klt, kst)}

Here, the initial intruder’s knowledge is IK = {b, e}. We run scenario S1 and check
the above formula with our tool and we obtained an attack, which corresponds to the
one found by Lowe [17].

We also run our tool to check the aliveness property for the fixed version of BAN
concrete Andrew Secure RPC protocol [17]. As claimed by Lowe [17], we also obtained
no attack for this property using our tool with respect to scenario S1.

Weak Agreement Weak agreement is defined as follows [19]:

A protocol guarantees to a responder A weak agreement with another agent B if,
whenever A (acting as responder) completes a run of the protocol, apparently with
initiator B, then B has previously been running the protocol, apparently with A.

For this property, B may not necessarily have been acting as initiator. The weak
agreement property can be expressed in PS-LTL as follows:

∀A,B, D1,D2, D3. ∃R′, D1′, D2′, D3′.

end(A, B, responder,D1, D2, D3) → O run(B, A, R′, D1′, D2′, D3′)

Weak agreement is stronger than the aliveness property, therefore the attack men-
tioned above also applies to this property. The attack is also successfully reported by
our tool.

Non-injective Agreement Non-injective agreement is defined as follows [19]:

A protocol guarantees to a responder A non-injective agreement with another agent B
on a set of data items D if, whenever A (acting as responder) completes a run of the
protocol, apparently with initiator B, then B has previously been running the protocol,
apparently with A, and B was acting as initiator in his run, and the two agents agreed
on the data values corresponding to all the variables in D.

This property is stronger than weak agreement. Nevertheless, it does not guarantee
that there is a one-to-one relationship between the runs of A and the runs of B. The
property we want to check can be formalized in PS-LTL as follows:

∀A,B, D1,D2, D3.

end(A, B, responder,D1, D2, D3) → O run(B, A, initiator, D1, D2, D3)

As in the weak agreement, for the scenario S1 the aliveness attack also applies to
this property and reported by our tool.

Proceedings of CPSec 2005

14 of 75

6.2 Secrecy

We now turn to study secrecy. In particular, we focus on two particular notions of
secrecy, viz. standard secrecy and perfect forward secrecy.

Standard secrecy We define standard secrecy as the inability of an attacker to obtain
the value of the secret [2]. Recall scenario S of our running example. The secrecy of
the session key kst, once the initiator a started a protocol run with the responder
b, can be checked simply by the following PS-LTL formula ¬learn(kst). We checked
this property using our tool and we found no secrecy attack on S.

Perfect Forward Secrecy We follow the definition of perfect forward secrecy (PFS)
given by Diffie, et.al [13]:

An (authenticated key exchange) protocol provides perfect forward secrecy if disclosure
of long-term secret keying material does not compromise the secrecy of the exchanged
keys from earlier runs.

In Diffie et.al [13], the proposed Authenticated Diffie-Hellman key exchange protocol
is shown to preserve PFS, since long term keys are only used to sign messages and are
never related to the session key derivation. This is not the case for the RPC Andrew
protocol and its variants, since the short term session key is directly encrypted by the
long term key. Still, the specification of PFS in PS-LTL is an interesting application
of our logic because it exhibits the ability to use several learn’s in the same formula,
c.f. related work.

In our framework, the disclosure of long-term secret keying material, e.g. klt, can
be realized by providing an additional protocol role, which contains only one send
event that leaks klt to the intruder. To specify PFS in PS-LTL we need to ensure
that (i) the leaking of the long-term key klt happens after a protocol run has been
completed, and (ii) before the leaking of klt the short term session key (kst in our
scenario S) has never been compromised. The former requirement allows us to have a
completed run before the long-term key is disclosed. This enables us to check whether
the key kst exchanged in this completed run can be compromised by the disclosure
of the long-term key klt. The latter serves as a precondition that guarantees the
secrecy of the exchanged key before the disclosure of the long-term key. Let scenario
S2 = S ∪ 〈 〈leaker : klt ⊲ e〉 〉 and IK = {e}. We express PFS in PS-LTL as follows:

learn(klt) ∧ Y(O (end(b, a, responder, na, klt, kst) ∧ H ¬learn(kst))) → H ¬learn(kst)

Thanks to Proposition 16, we can rewrite the property in a more efficient form:

learn(klt) ∧ Y(O (end(b, a, responder, na, klt, kst) ∧ ¬learn(kst))) → ¬learn(kst)

We run our tool to check this formula with respect to scenario S2 and we obtained
an attack. In this attack, the disclosure of klt enables the attacker to compromise kst.

6.3 Data Freshness

We state the data freshness property as follows:

Data D is fresh whenever an agent A (either as an initiator or as a responder) never
completes a protocol run with another agent agreeing on D, if once in the past A
(either as an initiator or as a responder) has already completed a protocol run with

Proceedings of CPSec 2005

15 of 75

another agent agreeing on the same data D.

The freshness of an exchanged session key K in our protocol is expressed in PS-LTL
as follows:

∀A,B1, R1, N1,K1, K, B2, R2, N2, K2.

Y(O end(A,B1, R1, N1, K1, K)) → ¬end(A, B2, R2, N2, K2, K)

We run our tool to check the freshness of the session key kst with respect to
scenario S1, and obtained an attack similar to the previous aliveness attack. In this
attack, the session key kst is used twice, i.e. when a was acting as an initiator in one
session and as a responder in the other session. Thus, it violates the freshness of kst.

For Lowe’s fixed version of BAN concrete Andrew Secure RPC protocol [17], no
attack was found with respect to the given scenario S1.

7 Conclusions

We propose PS-LTL, a language for specifying security properties. PS-LTL is based
on linear temporal logic (LTL) with pure-past operators, and it allows one to specify
several security properties including authentication [18, 10] (aliveness, weak agree-
ment and non-injective agreement), secrecy (standard secrecy [2] and perfect forward
secrecy [13]) and also data freshness. We present a sound decision procedure to check
a fragment of PS-LTL against symbolic traces, thus allowing to attach a PS-LTL
interpreter into our protocol verification tool [7] thereby providing a full verification
system. Due to space constraints we could not include the proofs in this version of
the paper. They can be found in the full version [9].

Future Work There are many possible directions. One direction is to implement for-
mula checking more efficiently: for example, such implementation would not recom-
pute the translation of PS-LTL to elementary formula EF every time a property is
checked, but maintain an internal data structure which can be optimized as the trace
gets expanded, in the lines of [16]. Another possible direction would be to enlarge
the subclass Φ of PS-LTL thus obtaining a more expressive language (eg. to cover
stronger authentication notions like the ones in [10]). Also, it is interesting to model
more protocols and their properties, e.g. from the Clark and Jacob library [5] (we
already tested four variants of the Andrew RPC protocol, and also the Needham-
Schroeder Public Key protocol, see [8]). Finally, more in-depth comparison to other
existing logics would be beneficial, such as NPATRL [24].

References

1. D. Basin, S. Mödersheim, and L. Viganò. Constraint differentiation: A new reduction
technique for constraint-based analysis of security protocols. In CCS’03, pages 335–344.
ACM Press, New York, 2003.

2. B. Blanchet. Automatic proof of strong secrecy for security protocols. Research Re-
port MPI-I-2004-NWG1-001, Max-Planck-Institut für Informatik, Stuhlsatzenhausweg
85, 66123 Saarbrücken, Germany, July 2004.

3. M. Bozzano, G. Delzanno, and M. Martelli. A bottom-up semantics for linear logic
programs. In M. Gabbrielli and F. Pfenning, editors, Proc. Second International ACM
SIGPLAN Conference on Principles and Practice of Declarative Programming (PPDP-
00), pages 92–102. ACM Press, 2000.

Proceedings of CPSec 2005

16 of 75

4. M. Burrows, M. Abadi, , and R.M. Needham. A logic of authentication. ACM Transac-
tions on Computer Systems, 8(1):18–36, 1990.

5. J. Clark and J. Jacob. A survey of authentication protocol literature: Version 1.0.
http://www.cs.york.ac.uk/ jac/papers/drareview.ps.gz, 1997.

6. R. Corin, A. Durante, S. Etalle, and P. H. Hartel. A trace logic for local security
properties. In Int. Workshop on Software Verification and Validation (SVV), volume
118, pages 129–143, Mumbai, India, Dec 2003. Elsevier Science in Electronic Notes in
Theoretical Computer Science.

7. R. Corin and S. Etalle. An improved constraint-based system for the verification of
security protocols. In M. V. Hermenegildo and G. Puebla, editors, 9th Int. Static Analysis
Symp. (SAS), volume LNCS 2477, pages 326–341, Madrid, Spain, Sep 2002. Springer-
Verlag, Berlin.

8. R. Corin, S. Etalle, and A. Saptawijaya. Online demo for PS-LTL . At
http://130.89.144.15/cgi-bin/psltl/show.cgi, June 2005.

9. R. Corin, S. Etalle, and A. Saptawijaya. PS-LTL for constraint-based secu-
rity protocol analysis. Long version of this paper, including Prolog code, at
http://www.cs.utwente.nl/ corin/ces05long.ps, June 2005.

10. C.J.F. Cremers, S. Mauw, and E.P. de Vink. Defining authentication in a trace model. In
T. Dimitrakos and F. Martinelli, editors, Fast 2003, Proceedings of the first international
Workshop on Formal Aspects in Security and Trust, pages 131–145, Pisa, September
2003. IITT-CNR technical report.

11. S. Delaune and F. Jacquemard. A decision procedure for the verification of security
protocols with explicit destructors. In Proceedings of the 11th ACM Conference on
Computer and Communications Security, pages 278 – 287, 2004.

12. G. Delzanno and S. Etalle. Proof theory, transformations, and logic programming for
debugging security protocols. In A. Pettorossi, editor, 11th Int. Logic Based Program
Synthesis and Transformation (LOPSTR), volume LNCS 2372, pages 76–90, Paphos,
Greece, Nov 2001. Springer-Verlag, Berlin.

13. W. Diffie, P. C. Van Oorschot, and M. J. Wiener. Authentication and authenticated key
exchanges. Designs, Codes and Cryptography, 2(2):107 – 125, June 1992.

14. D. Dolev and A.C. Yao. On the security of public key protocols. IEEE Transactions on
Information Theory, 29(2):198–208, 1983.

15. A. D. Gordon and A. S. A. Jeffrey. Types and effects for asymmetric cryptographic
protocols. J. Computer Security, 12(3/4):435–484, 2004.

16. K. Havelund and G. Rosu. Testing linear temporal logic formulae on finite execution
traces. Technical Report TR 01-08, RIACS, 2001.

17. G. Lowe. Some new attacks upon security protocols. In Proceedings of the Computer
Security Foundations Workshop VIII, page 162, 1996.

18. G. Lowe. Casper: A compiler for the analysis of security protocols. In Proc. 10th IEEE
Computer Security Foundations Workshop (CSFW ’97), pages 18–30. IEEE, 1997.

19. G. Lowe. A hierarchy of authentication specifications. Proceedings of the 10th Computer
Security Foundations Workshop (CSFW ’97), page 31, 1997.

20. C. Meadows. The NRL protocol analyzer: An overview. Journal of Logic Programming,
26(2):113–131, 1996.

21. C. Meadows, P. F. Syverson, , and I. Cervesato. Formal specification and analysis of the
group domain of interpretation protocol using NPATRL and the NRL protocol analyzer.
Journal of Computer Security, 12(6):893–931, 2004.

22. J. Millen. Constraint solving in Prolog Webpage. http://www.csl.sri.com/users/millen/
capsl/constraints.html.

23. J. Millen and V. Shmatikov. Constraint solving for bounded-process cryptographic pro-
tocol analysis. In 8th ACM Conference on Computer and Communication Security, pages
166–175. ACM SIGSAC, November 2001.

24. P. Syverson and C. Meadows. A formal language for cryptographic protocol require-
ments. Designs, Codes and Cryptography, 7:27 – 59, 1996.

25. F. J. Thayer, J. Herzog, , and J. D. Guttman. Strand spaces: Proving security protocols
correct. Journal of Computer Security, 7:191–230, 1999.

Proceedings of CPSec 2005

17 of 75

Masquerade Detection Using IA Network

Subrat Kumar Dash1, Sanjay Rawat?3, G. Vijaya Kumari2, and Arun K.
Pujari1

1 AI Lab, Dept. of Computer & Information Sciences
University of Hyderabad, Hyderabad- 500046 India
subrat.dash@gmail.com; akpcs@uohyd.ernet.in,

2 Dept. of Computer Science, JNTU, Hyderabad - 500072 India
vij tej@hotmail.com

3 Intoto Software (I) Pvt. Ltd.
Uma plaza, Nagarjuna Hills, Punjagutta

Hyderabad-500082 India
sanjayr@intoto.com

Abstract. In this paper we propose a novel masquerade detection method
based on constraint satisfaction problem. A masquerade attack is a chal-
lenge to the computer security, where an illegitimate entity poses as (and
assumes the identity of) a legitimate entity. The illegitimate user, called
masquerader, hides his/her identity by impersonating a legitimate user in
a computer system or network and may maliciously damage the system.
The detection of a masquerader relies on a user signature, a sequence of
commands collected from a legitimate user. The underlying assumption
is that the signature captures detectable patterns in a user’s sequence of
commands. We model a user as a binary constraint network such that
each node represents an episode of commands and binary relationship
between a pair of episodes is encoded as the disjunction of the Allens
Interval relations. The well-known framework IA network is employed
for the detection purpose. Any new subsequence of commands should be
consistent with at least one user network. If the subnetwork is not consis-
tent with any of the known networks, then we identify the subsequence
as masquerade. We make use of a novel technique of episode determi-
nation for this purpose. We performed extensive experimentation on a
well-known dataset (Schonlau Dataset) and find encouraging results.
Keywords: Masquerader, Unix commands, Frequent episodes,

Interval algebra, Constraint satisfaction problem.

1 Introduction

Advancement in the technology and computing is leading to better and more
efficient solutions to problems. Due to high performing computing devices, more
and more data can be analyzed rapidly for better understanding. But this high
performing characteristics also has a dark side. It has become relatively easier

? During the work, the author was associated with UoH as PhD scholar.

Proceedings of CPSec 2005

18 of 75

to capture the encrypted data and decrypt it very fast, which causes the disclo-
sure of important information to unintended person. This has given rise to the
problem of managing important information, like passwords, properly. Also, as
a human being, we tend to choose mnemonic passwords, so that we can recall
them easily. Therefore, it is always possible that the sensitive information, like
password, be known to others and if so, the consequences are very much obvious
to us.

One specific consequence of this information leakage is known as masquerade
attack, where an illegitimate entity poses as (and assumes the identity of) a
legitimate entity. The illegitimate user, called masquerader, hides his/her iden-
tity by impersonating a legitimate user in a computer system or network and
may maliciously damage the system. Masquerade attack can occur in varieties
of ways such as by obtaining a legitimate user’s password, accessing an unat-
tended and unlocked workstation, forging email address in messages, overtaking
a computer via a network access. It is not possible to detect such attacks by any
type of detection at the time of accessing. It is also hard to detect this type of
security breach at its initiation because the attacker appears to be a normal user
with valid authority and privileges. Masquerader can be either an insider with
malicious intent trying to hide his identity by impersonating other users or an
outsider, who generally try to gain access to the account of the super-user. The
broad range of damage that can be caused via masquerade attacks makes this
as one of most serious threats to computer and network infrastructure.

The detection of a masquerader relies on a user signature, a sequence of com-
mands collected from a legitimate user. The underlying assumption is that the
signature captures detectable patterns in a user’s sequence of commands. This
signature is compared to the current user’s session. A sequence of commands
produced by the legitimate user should match well with patterns in the user’s
signature, whereas a sequence of commands of a masquerader should match
poorly with the user’s signature. The detection becomes difficult when the mas-
querader perfectly mimics original user’s behavior. There is also a chance that
the legitimate user may be detected as a masquerader if the user’s behavior
change, which may cause annoying false alarms.

In the present paper, we propose a novel way of modeling user behavior
and the detection of masqueraders. Each user is profiled in terms of the unix
commands, issued by him. From the command history, the frequent episodes of
the commands are calculated by using an algorithm, originally proposed in [3].
We make use of 13 temporal relations to find the relationships among various
episodes in the command data[1]. These relationships are depicted as binary
constraint network and each user is represented as one network. When a new
sequence of commands is encountered, the corresponding constraint network is
generated based on the episodes present in the sequence and the binary rela-
tionships among the episodes. The new network in conjunction with the user
network is subjected to well known consistency checking technique of Tempo-
ral CSP. If the augmented network is consistent by itself but not consistent in
conjunction with any of the user network then the sequence is identified as a

Proceedings of CPSec 2005

19 of 75

masquerade sequence. We employ novel approach of episode determination and
temporal CSP techniques for this purpose.

The proposed methodology is tested on the well known Schonlau dataset [14].
The experimental results show the high accuracy of the proposed method.

The rest of the paper is organized as follows. In section 2 we briefly outline
the existing techniques of masquerade detection. Section 3 gives a preliminary
background about the episode discovery and interval algebra. We discuss about
the proposed method in section 4. Section 5 is concerned with the experimental
details. Our conclusion and future work follows in section 6.

2 Related Work

The detection of a masquerader relies on a user signature, a sequence of com-
mands collected from a legitimate user. The underlying hypothesis is that a
sequence of commands produced by the legitimate user should match well with
patterns in the user signature, whereas a sequence of commands of a masquer-
ader should match poorly with the user’s signature. Based on this assumption,
there have been numerous attempts at successfully detecting masquerade attacks
(minimizing false negatives) without degrading the quality of a user’s session
(minimizing false positives).

Schonlau et al. [14] investigate the use of various techniques, like Bayes 1-Step
Markov, Hybrid Multi-Step Markov, Incremental Probabilistic Action Modeling
(IPAM), Uniqueness, Sequence-Match, and Compression for masquerade detec-
tion. Bayes 1-Step Markov method is based on single-step transitions from one
command to the next, and it determines the consistency of the observed transi-
tion probabilities with historical probabilities. As reported in [14], this technique
is the best performer in terms of correct detections, but failed to get close to the
desired false alarm rate. Hybrid Multi-Step Markov method is based on Markov
models. In some sense it is hybrid model of Markov model and a simple indepen-
dence model, depending on the proportion of commands in the test data that
are not observed in the training data. IPAM (incremental probabilistic action
modeling) is based on single-step command transition probabilities, estimated
from the training data. IPAM’s performance reportedly ranks with those in the
lowest-performing group. Uniqueness approach is based on the frequency of var-
ious commands. Commands that are not seen in the training data, may indicate
a masquerade attempt. The more infrequently a command is used by the user
community as a whole, the more indicative that command is of being used by
a masquerader. It is reported that Uniqueness is a relatively poor performer
in terms of detecting masqueraders, but is the only method able to approach
the target false alarm rate of 1%. Sequence-Match method computes a similar-
ity match between the most recent user commands and a user profile. On the
Schonlau data, it is a poor performer. The idea behind the compression approach
is that new data from a given user compresses at about the same ratio as old
data from that same user, and that data from a masquerading user will com-

Proceedings of CPSec 2005

20 of 75

press at a different ratio and thereby be distinguished from the legitimate user.
Compression was the worst performer of the methods tested.

Maxion and Townsend [11] propose some improvements over the methods
proposed in [14]. Their Bayesian model assumes that the user generates a se-
quence of commands, one command at a time, each with a fixed probability that
is independent of the commands preceding it. The probability for each command
c for a given user u is based on the frequency with which that command appears
in the training data. The probability of a sequence of command is the product
of probabilities of individual commands in the sequence. A block is detected
as legitimate or masquerade based on the ratio of its probability as the user
u (self) or not the user u (non-self). In spite of the unrealistic assumption of
independence of individual commands, the technique performs very well. As an
enhancement, it is shown in [12] that valuable information is lost when trun-
cated command line data is used. It is proposed to use enriched command data.
The enriched commands include information like name, arguments, flag, alias,
options, directory, and history. It is reported that the dataset with enriched
commands yields better results than the earlier dataset of truncated commands.

In [4] Coull et al. propose a novel technique based on pair-wise sequence
alignment, which is a variation of the classic Smith-Waterman algorithm for
biological sequence [16]. It is observed that none of the conventional alignments
like local alignment or, global alignment is suitable in their original form for the
matching of command sequence. Therefore, in order to suit the context, a novel
scoring system is proposed that rewards the alignment of commands in the user
segment but does not necessarily penalize the misalignment of large portions of
the signature. This method produces a hit rate of 75.8% and false positive rate
of 7.7% that are extremely competitive with other top masquerade detection
algorithms. The only algorithms that perform comparably with these results are
the Naive Bayes algorithms.

Very recently, a new and efficient masquerade detection technique based on
SVM is proposed by Kim and Cha [8]. It is based on two novel concepts of
common commands and voting engine. The common commands are sets of com-
mands used frequently by more than n number of users at the rate exceeding Y%.
In order to extract features, the blocks of 100 commands are further viewed as
smaller blocks by sliding a smaller window within the block. Blocks of 100 com-
mands were divided into six different sub-blocks, each containing 50 commands
with a sliding window of size 10. SVM predictor determines if each sub-block
is normal or not. A voting engine decides if the total block is to be considered
as being anomalous. If the number of masquerade sub-blocks exceeds threshold
value, the block is considered as masquerade block. The results are reported to
be the best so far with 80.1% of detection rate and 9.7% false positive.

3 Preliminary Background

In this section, we provide necessary background to understand the proposed
technique.

Proceedings of CPSec 2005

21 of 75

3.1 Frequent Episode Discovery

In this section we describe an algorithm to extract meaningful subsequences
(episodes) from a continuous sequence of commands. An episode is defined as
an ordered set of elements (commands) within a given interval, such that the
order is maintained in whole data. The idea has been taken from the Voting-
Experts paradigm, proposed in [3]. The episode discovery method is concerned
with assigning score to every element of the sequence so that higher value of the
score indicates more likelihood of the element being the end point of an episode.
The scores for each element are accumulated for each position of a sliding window
of fixed length. While the window slides from left to right, the boundary-expert
scores for a position by computing boundary entropy and the frequency-expert
votes for the position based on the frequency of occurrence of the subsequence
in the whole sequence. The main intuition behind the boundary entropy is the
following.

In a subsequence, if any element precedes many distinct elements then it is
difficult to determine any pattern of occurrence of the pair of elements. Hence,
the entropy at this element has a very high value. On the other hand, if there
is any specific pattern of occurrence then the entropy would be low. Similarly,
the frequency-expert assigns high score when the subsequence is very frequent,
which is attributed to being more meaningful. In order to complete these scores
efficiently, it is proposed to compile the sequence data in the form of a trie of
ngrams. This data structure is used to determine the scores at every location.
We describe below the construction of trie from the sequence data.

Construction of Trie The trie can be viewed as a pre-fix tree of depth d, so that
each distinct subsequence of length d− 1 is a path from root node to a leaf node
in the tree. Two subsequences having common prefix share common ancestors
representing the prefix fragment. At every node, the frequency indicates the
frequency of the subsequence represented by the path from root to the current
node. The algorithm for construction of the trie is given in figure 1.

We illustrate the concept with the following example.
Example 1: Let us consider the sequence of six commands: <xrdb, cpp, sh,
cpp, sh, mv> The trie with depth 3 can be generated using the algorithm as
depicted in figure 2.

We can observe that the leaf node labeled sh (second from left) represents
the sequence {cpp, sh} and hence the number 2 at this node indicates the
frequency of the subsequence. And each of the sequences {xrdb, cpp}, {sh,
cpp} and {sh, mv} is present once. The two sequences {sh, cpp} and {sh,
mv}, have a common prefix {sh}, which is also the common ancestor for the
corresponding nodes.

Calculation of boundary entropy using the trie The entropy of a node
refers to the entropy of the sequence from the root node to the concerned node.
Let f(x) be the frequency of the node x. Let x0 be a node and parent(x0) be the

Proceedings of CPSec 2005

22 of 75

Input: Sequence of commands C, depth d
Initialize: root = NULL

n = d− 1
do for each ci ∈ C

if root has a child node labeled ci then
increment frequency of node ci by 1

else
add new child node labeled ci with frequency 1

endif
do for j = i− n + 1 to i− 1

if j > 0 then
do for each subsequence sk comprising of commands cj to ci−1

if sk has a child node with labeled ci then
increase frequency of this node by 1

else
add a new child node to the subsequence sk labeled ci with frequency 1

endif
enddo

endif
enddo

enddo

Fig. 1. Algorithm to construct an ngram of depth (n + 1) from a command sequence
C.

xrdb 1 2cpp sh 2 mv 1

cpp 1 sh 2 cpp 1 mv 1

root

Fig. 2. Trie for Example 1 with d = 3. The thickness of edges indicates the frequency.

parent node of x0. Let us assume that x1, x2, ..., xm are the other child nodes
of parent(x0).

The probability of the subsequence represented at node x0, denoted as p(x0),
is given by

p(x0) =
f(x0)

f(parent(x0))
(1)

The entropy of parent(x0) is given by

e(parent(x0)) = −
m∑

i=0

p(xi) log p(xi) (2)

It can be noted that the entropy for the leaf nodes is zero.

Proceedings of CPSec 2005

23 of 75

Each node of the n-gram trie has two parameters, one is frequency and the
other is entropy (except the root node). Level 1 onwards, for each level, we
calculate the mean frequency (fl), mean entropy (el), standard deviation taking
fl (σfl), and standard deviation taking el (σel). These are calculated by taking
the parameters of each node belonging to the same level. Now, for each node
belonging to the same level we standardize its frequency (f) and entropy (e) as,

f =
f − fl

σfl
, and e =

e− el

σel
(3)

Finding episodes using the n-gram trie structure To find episodes from
the given command stream, it is necessary to find the correct boundary in the
stream. We achieve this, by using the above n-gram trie with two parameters:
frequency and entropy. Both the parameters contribute equally in finding the
possible boundary by assigning scores to the probable boundary positions.

The above trie data structure helps us in efficiently computing the entropy
and frequency of a subsequence. We take a window of size n (n + 1 is the size of
the trie) and examine different subsequences within the window. For instance, if
x0, x1, x2, ..., and xn−1 are the elements falling in the window, then we examine
the entropy at each location as follows.

The entropy at location i is the entropy of the node xi at level i + 1 along
path x0, x1, ..., xi. The location corresponding to highest entropy is identified
and its score is incremented by 1.

The frequency at location i is calculated by the sum of the frequencies of
subsequences (x0 ... xi−1) and (xi ... xn−1). The score at the location with
highest frequency is incremented by 1. In this case, our goal is to maximize
the sum of the frequencies of the left and right subsequences of the probable
boundary.

We take a sliding window of length n. There are n possible boundary posi-
tions inside the window. After sliding the window across the whole command
sequence, we end up with scores for each location in the sequence. In a stream
of |C| commands, there are |C| − 1 positions within the sequence. If a position
is repeatedly voted for boundary by different windows then it is likely to accrue
a locally-maximum score. We choose the position with local maximum of score
as boundary of the episode.

3.2 Interval Algebra

Allen in his landmark paper [1] has proposed Interval Algebra, with 13 basic
relations to relate any pair of time intervals in which events could occur. This
initiated a substantial research activity in AI front to devise practical systems,
which reason about time. The set of all basic relations in IA, is represented by, I
= {b, eq, m, o, d, s, f, bi, mi, oi, di, si, fi}. These relations are exhaustive and are
pair wise disjoint. Figure 3, gives the semantics of these basic relations. When
the relation between a pair of intervals is indefinite, it is expressed as disjunction

Proceedings of CPSec 2005

24 of 75

of basic relations and is represented as a set. For example the relation {m, o, s}
between events A and B represents the disjunction

(A meets B) ∨ (A overlaps B) ∨ (A starts B).

Thus there are 213 = 8192 possible ways to relate a pair of intervals. An IA
network is a graphical representation of this information where the vertices rep-
resent events and directed edges are labeled with sets of basic relations. The
main reasoning tasks in this framework include, checking consistency of the
given information and finding the feasible relations among all the variables in
the network. The temporal information represented in terms of a collection of
qualitative relations constrains time intervals and the reasoning tasks therefore
reduce to the standard Constraint Satisfaction Problem (CSP). A CSP consists
of a set of constraints over a set of variables, where each variable is associated
with its domain of values.

An IA network is a network of binary constraints where the variables repre-
sent time intervals, the domain of the variables are the end points of the variables
and the binary constraints between variables are represented implicitly by the
sets of basic relations.

Determining the feasible relations for example can be viewed as determin-
ing the deductive consequences of the given temporal information. For example
from the information, episode1 meets episode2, episode2 meets episode3,
we could derive that episode1 before episode3.

The main inference technique (path consistency) in this framework is based
on constraint propagation.
Consider 3 intervals I, J , L with constraints I Rij J , J Rjl L and I Ril L.
Compute relational composition and intersect with the direct relation.

I Ril L = (I Rij J ⊗ J Rjl L) ∩ I Ril L.

Continue until fixed relation. This path consistency algorithm is used as
inference algorithm for Allen’s Interval Algebra.

4 Proposed Method

The present method of masquerade detection is based on the user command data.
We observe that while a user shows a consistent behavior over a long period of
time, it may happen that due to some requirement of temporary nature, the same
user may type in few different commands. In such situation, we get interleaving
of command sequence i.e. during user’s usual command sequence, there may be
some other command sequence, arisen due to temporary requirement. Under
such conditions, mere command sequence matching may not be very suitable
technique to apply. We, therefore, propose to use interval algebra to capture
interleaving of different command subsequences. We consider user command data
as time series and apply various temporal relations, depicted in figure 3, to find
the relation among various command subsequence (we call as episodes).

Proceedings of CPSec 2005

25 of 75

Fig. 3. 13 basic relations in IA

Let there be a total of K users. Once the command sequence for each user is
collected, we apply the frequent episode discovery algorithm, described in figure
1, to find the frequent episodes of user command sequence for all user. Let there
be a total of N episodes. These N episodes are represented as nodes of a directed
graph Gi corresponding to user i. For each user and for each episode, we find the
interleaving of episodes in user’s command sequences by using the 13 relations
shown in figure 3. The sets of relations among episodes that are being satisfied
by the user’s command sequence constitute the edges of the graph Gi. Thus for
each user i, we have a graph Gi to represent the user’s normal behavior. We
illustrate the above method by taking an example below.

Let the user’s command sequence be <ls pwd cd ls grep pwd cat ls cd
grep>. Let us take the following three frequent episodes.

(pwd cd), (ls ls) and (ls grep)

The interleaving of episodes is shown in figure 4

ls pwd cd ls grep pwd cat ls cd grep

Fig. 4. The interleaving of the episodes in user command sequence.

Proceedings of CPSec 2005

26 of 75

On the basis of interleaving, shown in the figure 4, we get the following graph
(figure 5)

N 2

N 1 N 3

{d,bi}

{b, m}

{b, o, bi}

Fig. 5. User’s profile shown as the graph, where each node corresponds to one episode
and each edge denoted the set of constraints, satisfied by corresponding nodes.

For the detection of masqueraders, the incoming command sequence, corre-
sponding to user i, is also subjected to same procedure of forming the graph, G′i,
as mentioned above. The so formed new graph G′i is compared with the user’s
graph Gi to find the consistency with the normal graph Gi. To do so, we compare
the set of relations for each edge of the two graphs. The following expression is
used for comparison.

(13− edge(Gi)) ∩ edge(G′i) = NULL (4)

If equation 4 holds, then incoming command sequence belongs to user i. The
intuition behind the above equation is that, if the incoming command sequence
indeed is coming from the genuine user, then it should also form the same tree
and in such case the expression 13− edge(Gi) consists of relations not belonging
to genuine user, whose intersection with incoming sequence, thus, gives informa-
tion about the normal or masquerader. If the above relation (equation 4) does
not hold then we go for path consistency check by using the Qualitative-Path-
Consistency algorithm [6]. If the graph G′i is consistent with the graph Gi, the
incoming command sequence belongs to user i and if the graph G′i is inconsistent
with the graph Gi, the incoming command sequence does not belong to user i.
But, if the graph corresponding to the new sequence data is NULL, we directly
flag it as masquerade sequence without comparing with the normal graph.

In the next section, we report experimental results on Schonlau dataset.

5 Experimental Results

For experimentation, we choose Schonlau dataset [14], which is a truncated com-
mand dataset (i.e. excluding the arguments of commands), commonly called as

Proceedings of CPSec 2005

27 of 75

SEA dataset. The user’s commands are collected by UNIX acct auditing mech-
anism consisting of 15,000 truncated commands for each of the 70 users. Out of
these 70 users, 50 users are selected randomly. Commands entered by the rest 20
users are used to simulate masquerade activities. Each command set is decom-
posed into 150 blocks consisting of 100 commands each, and the first 50 blocks,
or 5,000 commands, are used as training data and the rest as test data. Ex-
periment administrators randomly inserted 0∼24 command blocks as a means
of approximating actions by masqueraders. The testing data is contaminated
block-wise, so that a testing block is either contaminated completely or not at
all.

From training data of all users, we find 9770 episodes. Out of these 9770,
we select the episodes that occur at least 1000 times in the training data. From
these episodes, we discard those episodes, which are the multiples of some smaller
episode. After this preprocessing, we get 20 episodes for constructing user’s pro-
file Gi. We perform masquerade detection on testing data by taking one block
of 100 commands at a time. To measure the accuracy, we define the following
measures of accuracy.

µi = # of normal block detected as normal
total # of normal blocks

λi = # of masquerade block detected as masquerade
total # of masquerade blocks

(5)

The above expression is calculated for each user i. Once it is calculated, the total
accuracy of the method is calculated as follows.

TotalAccuracy =

K∑

i=1

(µi + λi)

2K
(6)

It should be noted that the total accuracy given by the equation 6 incor-
porates true negatives (µi) and true positives (λi) in the parlance of intrusion
detection. We also observe that though the total number of profiled user is
K = 50, some of them do not contain any masquerade blocks. Such users are
excluded while calculating the value of total accuracy. Based on the accuracy
measure, defined by equation 6, we get an accuracy of 0.76 on the test data.

6 Conclusions

In the present study, we investigate the applicability of IA in the problem of
masquerade detection. We observe that user’s commands data has some vari-
ability from time to time for a short period of time. To capture the interleaving
of various command sequences, we make use of 13 temporal relations and rep-
resent the user’s profile as a graph. Each new command sequence is converted
into a similar graph and is compared with the corresponding user’s graph. If
the graph is not consistent with the normal graph, we flag the new command

Proceedings of CPSec 2005

28 of 75

sequence as masquerade. The work is still in its preliminary stage and needs a
lot of analysis and experimentation. We also observe that the variation in user’s
command sequence should also be considered while comparing it with new com-
mand sequence. We are trying to incorporate such things into our work, which
form our future work.

Acknowledgement

This research is supported by Ministry of Communication and IT, Govt of India
under the grant no. 12(22)/04-IRSD dated: 04.02.2004.

References

1. Allen, J.: Maintaining knowledge about temporal intervals. Communications of the
ACM, 26, (1983) 832-843

2. Chinchani, R., Muthukrishnan, A., Chandrasekaran, M., Upadhyaya, S.:
RACOON: Rapidly generating user command data for anomaly detection from
customizable templates. 20th Annual Computer Security Applications Conference
(ACSAC), Tucson, AZ , December (2004)

3. Cohen, P., Heeringa, B., Adams, N. M.: An unsupervised algorithm for segment-
ing categorical timeseries into episodes. In: Proceedings of the ESF Exploratory
Workshop on Pattern Detection and Discovery, London, UK. September (2002)
49-62

4. Coull, S., Branch, J., Szymanski, B., Breimer, E.: Intrusion detection: A bioin-
formatics approach. In: 19th Annual Computer Security Applications Conference,
Las Vegas, Nevada, December 8-12. (2003)

5. Davison, B. D., Hirsh, H.: Predicting sequences of user actions. Predicting the
Future: AI Approaches to Time-Series Problems. AAAI Technical Report WS-98-
07, AAAI Press, Menlo Park, California, (1998)

6. Dechter, R.: Constraint Processing. Morgan Kaufmann Publishers. (2003)
7. Killhourhy, K. S., Maxion, R. A.: Investigating a possible flaw in a masquerade

detection system. Technical Report CS-TR: 869, School of Computing Science,
University of Newcastle. (2004)

8. Kim, H.-S., Cha, S.-D.: Empirical evaluation of SVM-based masquerade detection
using UNIX commands. Computers & Security, Vol. 24, March. (2005) 160-168

9. Lane, T., Brodley, C. E.: Temporal Sequence Learning and Data Reduction for
Anomaly Detection. In: Proceedings of the Fifth ACM Conference on Computer
and Communications Security, San Francisco, California, November 3-5. (1998)
150-158

10. Maxion, R. A., Townsend, T. N.: Masquerade detection augmented with error
analysis. IEEE Transactions on Reliability, 53(1) March (2004) 124-147

11. Maxion, R. A., Townsend, T. N.: Masquerade detection using truncated command
lines. In: Proceedings of the International Conference on Dependable Systems and
Networks (DSN-02), Washington, D.C. 23-26 June (2002) 219-228

12. Maxion, R. A.: Masquerade detection using enriched command lines. In: Interna-
tional Conference on Dependable Systems and Networks (DSN-03), San Francisco,
CA, USA, June (2003)

Proceedings of CPSec 2005

29 of 75

13. McCallum, A., Nigam, K.: A comparison of event models for Naive-Bayes text clas-
sification. In AAAI-98 Workshop on Learning for Text Categorization, Madison,
Wisconsin (1998)

14. Schonlau, M., DuMouchel, W., Ju, W., Karr, A. F., Theus, M., Vardi, Y.: Computer
intrusion: Detecting masquerades. Statistical Science, 16(1) February (2001) 58-74

15. Schonlau, M., Theus, M.: Detecting masqueraders in intrusion detection based on
unpopular commands. Information Processing Letters, 76(1-2) November (2000)
33-38

16. Wagner, R. A., Fisher, M. J.: The string-to-string correction problem. Journal of
the ACM, Vol.21 (1974) 168-173

17. Wang, K., Stolfo, S. J.: One-class training for masquerade detection. In: 3rd ICDM
Workshop on Data Mining for Computer Security (DMSEC), Florida, November
(2003)

Proceedings of CPSec 2005

30 of 75

Distributed CLP Clusters as a Security Policy
Framework for Email

Saket Kaushik, Duminda Wijesekera, William Winsborough, Paul Ammann
Center for Secure Information Systems (CSIS),

Department of Information Systems and Software Engineering,
George Mason University, Fairfax VA 22030.

e-mail:{skaushik|dwijesek|wwinsbor|pammann}@gmu.edu

Abstract

The simple mail transfer protocol (SMTP) used to transmit e-mail was de-
signed with no security related control, resulting in it being exploited as a means
to send “unwanted” email (a.k.a. “spam”). Consequently, recent extensions have
concentrated on policy based management of e-mail pipeline that begins with the
sender and ends with the intended receiver. As a theoretical framework to ad-
dress this problem, we propose a distributed constraint logic programming (CLP)
based framework in which policies are CLP modules that control message flow,
and transmit messages acceptable to downstream principals. Our syntax is based
on using stratified Horn clauses with constructive negation. The distributed aspect
is used to enable the system to move enforcement points upstream in the mes-
sage flows, as well as to enable message senders and their service providers to add
headers useful for downstream actors. It is facilitated by importing and exporting
predicates (cf. Maher [19]) among legal participants of the email pipeline. Ac-
cordingly our semantics consists of an appropriately tailored three-valued seman-
tics, where stratification is used to ensure the finite termination of policy goals. For
efficient implementation, we propose to materialize the policies and show that the
materialization structure ”faithfully models” our distributed policy.

1 Introduction
Due to a lack of effective control during the transmission of email messages, malicious
senders are able to send a large volume of ‘unwanted’ messages, or ‘spam’, to recip-
ients. This is clearly undesirable from the recipient’s point of view, and the scientific
community has responded by inventing a plethora of techniques to fight this problem,
of which prominent ones are covered in the related work section. The large number of
‘solutions’ is an evidence to the fact that there are many aspects to this problem, with
each individual technique only solving a small part.

The primary hindrance to effectively utilizing different techniques for email con-
trol stems from the fact that their use introduces a risk of dropping desirable messages.
Email control techniques usually require supporting documentation in the messages to
aid the recipients in deciding whether to accept a message. For example, a message

Proceedings of CPSec 2005

31 of 75

with a monetary bond [18] must contain relevant information like its numeric value,
currency,etc. In the absence of a means to convey the recipient’s requirements up-
stream, with respect to message documentation, the senders may not be able to discover
the appropriate documentation required, thereby introducing a risk of losing valuable
messages. This results in recipients not utilizing the full power made available to them
by these control techniques.

The second deterrent to effectively utilizing email-control techniques is an absence
of a flexible means of combining them, to suit the requirements of a particular email
domain. For example, currently there is no means to encode the requirement that says
that “even if the sender is on the blacklist, accept the message if it is bonded with
value> $1.00”, or, “even if the bayesian filter ranks the message as spam, accept the
message if the sender is a family member or a business partner”. Thus, the diverse
ways by which a message may be acceptable cannot be applied in practice.

In our approach, we address these two shortcomings in the following way. First,
we provide a language for richer policy expressivity, that can flexibly combine the
various email control techniques. We empower each principal involved in message
transmission to apply acceptance criteria and thus provide an effective control mecha-
nism. Building on a prior study [15], we also design a feedback scheme in which the
senders, whose messages are not appropriately documented, are given an opportunity
to do so, thus minimizing the chances of losing desirable messages.

1.1 Our contribution

The main contributions of this paper include the following:
• A flexible policy language for expressing email control criteria including existing

email control mechanisms. We identify a constraint domain, which can support
acceptance criteria involving a majority of existing control mechanisms.

• A logical evaluation procedure for control decisions proposed earlier [15].
• A scheme for revising rejected messages to make them desirable to the intended

recipients. It also enables recipients and other principals to effectively use pre-
cise acceptance criteria.

2 Policy Architecture
The heart of email is the Simple Mail Transfer Protocol (SMTP) [26], which is simply
a best-effort delivery protocol with a first-come, first-served transmission policy. The
protocol favors senders, ensuring reliable delivery of emails of the sender’s choosing.
To offset this bias we propose to empower each principal with a partial control of
the email pipe, thereby allowing them to control their own participation in message
transmission.

Figure 1 illustrates the principals and proposed policies in a policy-mediated email
pipe. There are four principals directly involved in an email exchange. In addition
to the sender and the recipient, the remaining two principals are the sender’s Email
Service Provider (ESP), and the recipient’s ESP. In current practice ESPs help email
service scale to the vast numbers of senders and recipients on the Internet. ESPs are
well positioned to provide evaluations of particular messages, sender authentication,
virus-scanning and their inclusion is necessary to model proposed approaches which
make use of third party mechanisms,e.g., reputation server [11, 23], escrow service for

Proceedings of CPSec 2005

32 of 75

(SP)

RecipientsSenders

Service Level Agreement

Send Policy
Sender’s

(SPP)Policy
Postman
SESP’s

(RPP)Policy
Postman
RESP’s

Mailbox Resource
Allocation Policy

(MRAP)

(RESP)(SESP)

MessagesFeedbackCertificates Reputation

Email
Service
ProviderProvider

Service
Email

Set of Third party Information sources

Messages

(MSP)

(SLAP)

Policy
Message Scheduling

Policy

Messages

DB

���
���
���
���

������

���
���
���

���
���
���

������

	�	�	
	�	�	

�

�

���
���
���

���
���
���

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

Figure 1: Principals and Policies in an Email Pipe

Policy Author Provides/Expresses
SP Sender Instructions for revising messages
SPP SESP Egress filtering, revising messages, effecting delays
SLAP RESP Quality of service to SESP, connection filtering, delays
MSP RESP Message acceptance criteria, revising suggestions, delays
RPP RESP Ingress filtering, message delaying, prioritization
MRAP Recipient Individual acceptance criteria, message delaying

Table 1: Control achieved through policies

bonds [18],etc. It is important to note that the interests of the ESPs are separate from
the interests of their clients. For example, a sending ESP with a reputation for harboring
misbehaving senders might lose well-behaved customers if the Internet community as
a whole treats all mail from the ESP with suspicion.

Six types of policies are identified in figure 1, based on an earlier design [15],
which, we claim, are sufficient to combine a majority of email-control mechanisms.
Next we briefly justify this assertion that our approach is comprehensive. In their Send
Policy (SP) sender’s can express their preferences in providing upgrades to messages,
in order to get their emails to their destinations. SESP can provide egress filtering [5],
message delaying [10] in addition to applying revisions to rejected messages using its
postman policy (SPP). RESP provides connection filtering [17], and quality of service
to requesting peers through the SLAP policy. Through MSP, and additionally MRAP, it
can not only select messages to allow transmission, but also provide meaningful feed-
back for revising rejected messages. RPP, the RESP’s postman policy, can prioritize
delivery of important messages, message sanitization,etc.Finally MRAP implements
individual message reception preferences like bond requirements [18],etc. Clearly,
proposed policies give each principal sufficient control, so as to protect its interests

Proceedings of CPSec 2005

33 of 75

(see table 1).
The SP, SPP, MSP and MRAP policies are directly involved in the transmission of

individual messages and their syntax is described in§ 3. In broad terms, SPP and RPP
are used to selectively prioritize delivery of messages, however, we do not elaborate on
this function here. With SPP we focus primarily on the message delivery and revision
function functions. The SPP policy can be divided into two modules: Delivery module
(DM) and Revision module (RM).

SP

SPP−DM

SPP−RM

SPP−DM

SPP−RM

accept()

accept()

revise()

revise()

MSP / MRAP

MSP / MRAP

Revision check

apply()

apply()

selectFix()

1st Attempt

2nd Attempt

apply()

Acceptance check

SPP

SPP

selectFix()

headers()

message()

headers()

message()

Figure 2: Interaction of policies for message transmission

Figure 2 pictures a module network comprising of four policies: SP, SPP(= SPP-
DM ∪ SPP-RM), MSP and MRAP. Each module shown interacts with other modules
by importing or exporting predicates. Each directed arrow identifies the source and
destination of the predicate that is identified by the arrow label(s). These interactions
are described next. The top-level query is ‘accept()’, which forms the interface to the
module network. A message is represented as a set of facts in the SPP-DM, SPP’s de-
livery module. SPP-DM exports ‘message()’ and ‘header()’ predicates to MRAP and
MSP policies, respectively. MSP and MRAP can ‘accept()’ a message or reject it by
exporting ‘revise()’ predicate to SPP-RM, the revision module. SP’s ‘canChange()’
predicate indicates what changes can be applied. Using the ‘canChange()’ predicate,
SPP-RM computes an inexpensive revision, by using the ‘selectFix()’ predicate. The
revised message is then enqueued for retransmission. The ‘1st Attempt’ and ‘2nd At-
tempt’ labels denote initial transmission and retransmission of a revised message to
emphasize the fact that the predicate communication graph is acyclic. In essence, a
re-attempt can be treated as a new message.

3 Formal Model

3.1 Syntax

Definition 1 (Constraint domain). Finite Integer domain, a contiguous subset ofZ, denoted
byFD and interprets =,6=, ≤, ≥, minimize(G, E) predicates, where minimize finds answers to
the atom G (defined below in definition 6) that minimize the arithmetic expression E.

We use elements ofFD to implicitly encode all alphanumeric constants, like,
sender address or recipient address,etc.

Proceedings of CPSec 2005

34 of 75

Definition 2 (Terms). Terms consist of only constants and variables (no function symbols),
which range overFD. The notation

−→
X,

−→
Y, etc. is used to refer to a finite tuple, of arity 6, of

terms (to conserve space).

Definition 3 (Headers). Reserved constants that refer to message attributes, called headers.

In this paper, we consider only the headers described in table 2. Other headers can
be easily added. Note that From,. . ., Auth represents 1,. . ., 6.

Email-Header Constant Represents
Mail From From 1

Rcpt To To 2
Date Date 3

X-SESP Sesp 4
X-Bond Bond 5
X-Auth Auth 6

Table 2: Reserved constants for email headers

Definition 4 (Primitive constraint). A primitive constraint is of the form p(t1, t2) where p
is a constraint relation of arity 2, taken from the list =,6=, ≤, ≥, and minimize, and t1, t2 are
terms when p∈ {=, 6=, ≤, ≥} and an atom (defined below in definition 6) and an arithmetic
expression, respectively, when p is the minimize predicate.

Definition 5 (Predicates). Predicate symbols (described in table 3) are partitioned into fol-
lowing sets:

• Required local predicates (RL)
• Import-Export predicates (IE)
• Optional local predicates (OL)

Definition 6 (Atom and Literal). An atom is of the form q(t1,. . . ,tn) where q is a predicate
symbol or a primitive constraint and t1,. . . ,tn are terms. A literal is an atom (i.e., a positive
literal) or its negation (i.e., a negative literal).

Definition 7 (Clause, Fact, Rule).A clause is of the form H← B where H is an atom, and
B is a list of literals. A clause is called a fact if B =λ (empty list), and a rule otherwise.

Definition 8 (Policy Module). A policy module (or simply a module), MP , is a set of clauses
PP with three disjoint sets of predicates: the local predicates, LocP , the exported predicates,
ExpP , and the imported predicates ImpP . We require that the head of clauses in PP be from
LocP ∪ ExpP .

Next we define the policy modules that we construct using the above syntax. The
intuitive meanings of predicates introduced in definition 5 are presented in table 3.
Readers may wish to peruse the table as they read definitions 9 – 12. In the following,
we abuse the terminology at times and call an atom a predicate (to be able to discuss
predicates and their arguments).

Proceedings of CPSec 2005

35 of 75

Predicate/
Arity

Description Predicate/
Arity

Description

Required Local Predicates (RL) Required Local Predicates (RL) (contd.)

allow/6 defines acceptance criteria; arguments corre-

spond to header values and delivery iteration

nHeader/2 associates header names with values

disallow/6 defines rejection criteria, same arguments as

allow

Import-Export Predicates (IE)

rAllow/6 acceptable revised header tuples accept/6 combines allow & disallow, with same argu-

ments as allow

rDisallow/6 unacceptable revised header tuples revise/12 combines rAllow & rDisallow

Env/2 sets non-revisable header variable to the value

given in the message

header/2 associates header names with original val-

ues

checkEnv/6 collects header values in the original message content/1 associates ‘content’ with message provided

value

fixEnv/6 collects non-revisable header values message/7 associates header names and ‘content’ with

values

icost/4,

cost/4

cost for revising a header H with having value

R1 to new valueR2

nonFinal/1 True if header can be revised

total/13 total cost for revising headers
−→
R1 to

−→
R2 sysvar/2 associates system variable ‘var’ to current

value

selectFix/6 computes a low-cost revision to a message primmech/2 associates computation of ‘mech’ to the

computed value

relay/7 defines criteria for relaying a message; argu-

ments correspond to header values, content

and delivery iteration

Optional Local Predicates (OL) (Examples)

norelay/7 defines criteria for dropping a message; same

arguments as relay

whitelist/1 True if argument is whitelisted

deliver/7 combines relay and norelay blacklist/1 True if argument is blacklisted

canChange/2 permits change to header value partner/1 True if argument is a partner

Table 3: Intuitive meanings of predicates

Definition 9 (MSP policy module). An MSP policy module MMSP, is given by〈ImpMSP,
ExpMSP,LocMSP,PMSP〉, in which ImpMSP= {header, nonFinal, sysV ari , primMechj}, ExpMSP={
accept, revise}, LocMSP={allow, disallow, rAllow, rDisallow, checkEnv, fixEnv, Env} ∪ OL pred-
icates and PMSP, a set of facts and stratified [22] rules, which has four strata:

• Stratum 0: Definitions of RL predicates: checkEnv(
−→
X), fixEnv(

−→
X) and Env(X,Y), where−→

X = XFrom, . . ., XAuth. These are as follows:

checkEnv(
−→
X) ← header(From, XFrom), header(To, XTo),

header(Date, XDate), header(Sesp, XSesp),

header(Bond, XBond), header(Auth, XAuth). (1)

fixEnv(
−→
X) ← Env(From, XFrom), . . . , Env(Auth, XAuth) (2)

Env(H, XH) ← nonfinal(H) (3)

Env(H, XH) ← header(H, XH) (4)

• Stratum 1: Definitions of all OL predicates
• Stratum 2: Definition of following RL predicates: allow(

−→
X), disallow(

−→
X), rAllow(

−→
X)

and rDisallow(
−→
X). In addition to Strata 0,1 predicates, most of IE predicates can be

used in the body of the defined rules, except content(X), message(
−→
X), and primmech(X, Y)

Proceedings of CPSec 2005

36 of 75

predicates. As a further restriction,allow and disallowpredicates cannot usefixEnv or
Envpredicates.rAllow and rDisalloware constructed fromallow anddisallowpredicate
definitions in the following manner. For each allow (resp., disallow) rule, a rule with
rAllow head (resp., rDisallow) is generated with checkEnv replaced by fixEnv.

• Stratum 3: RL predicate accept, defined as, accept(
−→
X) ← allow(

−→
X), ¬disallow(

−→
X);

• Stratum 4: RL predicate revise, defined as, revise(
−→
X,
−→
Y)← checkEnv(

−→
X),¬accept(

−→
X),

rAllow(
−→
Y), ¬ rDisallow(

−→
Y).

Note that constraints do not occur in the rules (1– 4) as Env, checkEnv, and fixEnv
predicates are used to set up the environment,i.e., the values of headers provided in
the message. Constraints on variables are expressed in the rest of the policy. Negation
is used in a very limited way, such as, in the definitions of system defined predicates,
like, accept, deliver,etc., or with allow and disallow,etc.Negation can be used in OL
predicates, provided some conditions are met. Primarily, OL predicate definitions must
be stratified according to the following restrictions (i) can positively refer to atoms
whose predicate symbols are defined in the same or lower OL strata, and atoms in
Stratum 0 (ii) can negatively refer to atoms whose predicate symbols are defined in a
lower OL strata and atoms in Stratum 0. The OL strata forms substrata of Stratum 1.

Definition 10 (MRAP policy module). An MRAP policy module, MMRAP is given by〈ImpMRAP,
ExpMRAP,LocMRAP,PMRAP〉, in which ImpMRAP={ content, message} ∪ ImpMSP, ExpMRAP= {accepta,
revisea}, LocMRAP = {allowa, disallowa, rAllowa, rDisallowa, checkEnva,fixEnva,Enva} and
PMRAP is a set of stratified clauses, with the following strata (all Loc and Exp predicates have
been subscripted to prevent name collisions with MSP policy):

• Stratum 0: Definitions of RL predicates checkEnva(
−→
X), fixEnva(

−→
X) and Enva(X,Y), as

defined in the MSP stratum 0.
• Stratum 1: Definitions of OL predicates.
• Stratum 2: Definitions of the following RL predicates: allowa(

−→
X), disallowa(

−→
X),

rAllowa(
−→
X) and rDisallowa(

−→
X). All IE predicates can be used in the body of the defined

rules. MSP restrictions on use offixEnva apply. rAllowa, rDisallowa are constructed as
shown in MSP stratum 2.

• Strata 3 and 4: RL predicate accepta(
−→
X) (Stratum 3) and revisea(

−→
X,
−→
Y) (Stratum 4),

defined similar to the corresponding predicate definitions in MSP strata 3 and 4.

Definition 11 (SP policy module). SP policy module, MSP = 〈ImpSP, ExpSP,LocSP,PSP〉, in
which ImpSP =∅, ExpSP={ canChange}, LocSP =∅ and PSP, is a set of rules or facts that define
canChange(X,Y) clauses.

Definition 12 (SPP). SPP consists of two modules:

SPP-DM: Delivery module Delivery module, MSPP-DM = 〈ImpSPP-DM, ExpSPP-DM, LocSPP-DM,
PSPP-DM〉, in which ImpSPP-DM={canChange}, ExpSPP-DM={header, content, message, non-
Final}, LocSPP-DM={relay, norelay, deliver} and PSPP-DM, consists of following strata of
rules:

• Stratum 0: Facts - header(X,Y), content(X) and nonFinal(X) and definition of
message(

−→
X , C) predicate: message(

−→
X, C)← header(From, XFrom), . . . , header(

Auth, XAuth), content(C); where
−→
X = XFrom, . . ., XAuth.

• Stratum 1: Definition of RL predicates relay(
−→
X , C) and norelay(

−→
X , C). Definitions

can use IE predicates and lower strata predicates in the body.

Proceedings of CPSec 2005

37 of 75

• Stratum 2: Definition of SP predicate deliver(
−→
X , C), defined as,deliver(

−→
X, C)

← relay(
−→
X, C), ¬norelay(

−→
X, C)

SPP-RM Revision module Revision module, MSPP-RM=〈ImpSPP-RM,ExpSPP-RM,LocSPP-RM,PSPP-RM〉,
in which ImpSPP-RM={revise, revisea}, ExpSPP-RM= ∅, LocSPP-RM= {cost, icost, total, se-

lectFix} and PSPP-RM, a set of rules that define selectFix(
−→
X), total(

−→
X,
−→
Y, Z), cost(H,X,Y,C)

and icost(H,X,Y,C) predicates. The icost(H,X,Y,C) predicate is defined by a collection of
facts that define a cost C to change header value X to Y. The predicates nHeader and cost
are defined as (maxInt is the largest integer inFD):

cost(H, X, Y, C) ← canChange(H, Y), icost(H, X, Y, C) (5)

cost(H, X, Y, maxInt) ← ¬canChange(H, Y) (6)

nHeader(H, XH) ← selectF ix(XFrom, . . . , XH , . . . , XAuth) (7)

nHeader(H, XH) ← ¬selectF ix(XFrom, . . . , XH , . . . , XAuth),

nHeader(H, XH) (8)

Definition 13 (Supporting modules). Supporting policy modules include the system mod-
ule, a four tuple:〈∅, {sysvari}, ∅, Fs〉, and primitive mechanisms, which are given by following
forms of 4 tuples:〈{header(h, Xh)}, {primmechi}, ∅, Fp〉.

The sets of clauses (Fs, etc.) in the supporting modules are essentially a set of
facts. In practice, these are constructed at evaluation time based on system environment
conditions. The number of supporting modules varies depending on the predicates used
in the MSP and the MRAP modules. We use a set SMn, to representall the supporting
modules whose predicates are imported by the MSP and the MRAP modules.

Example 1 (MSP or MRAP policy module). Consider the Stratum 3:

allow(
−→
X) ← checkEnv(

−→
X), whitelist(XFrom). (9)

disallow(
−→
X) ← checkEnv(

−→
X), blacklist(XFrom). (10)

allow(
−→
X) ← checkEnv(

−→
X), XAuth = PKI. (11)

Rule 9 says that a message is acceptable if the sender is in the recipient’s whitelist. Rule 10
says that a message is unacceptable if the sender is found to be on the recipient’s blacklist. Rule
11 says that a message is acceptable whenever the message has been strongly authenticated.
Together, the rules allow emails from senders who are whitelisted or who strongly authenticate
their messages, and block messages from blacklisted senders.

Example 2 (SP policy module).

canChange(Bond, C) ← C < 5 (12)

canChange(Auth, ‘PKI ′) ← (13)

Rule 12 says that if required, a bond of value less than 5 can be applied to the outgoing message.
Similarly, fact 13 says that sender’s private key can be used to add digital signatures or other
forms of PKI based authentication.

Example 3 (SPP).A simple delivery module (SPP-DM):

relay(
−→
X,C) ← message(

−→
X,C),¬primNortan(C) (14)

relay(
−→
X,C) ← message(

−→
X,C),¬primcrm2(C, X), X < 0.3 (15)

Proceedings of CPSec 2005

38 of 75

Rule 14 says that if the message is found free of any virus, it can be delivered. Rule 15 states a
message ranking low on the spam filter, can be delivered. Together the rules require a message
to undergo either a virus-scan or a filtering process to be allowed delivery.
A simple revision module (RM):

total(
−→
R1,

−→
R2,

−→
C) ← revise(

−→
R1,

−→
R2), cost(From, R1,From, R2,From, C1), . . . ,

cost(Auth, R1,Auth, R2,Auth, C6) (16)

selectF ix(
−→
R2) ← minimize(total(

−→
R1,

−→
R2,

−→
C), C1 + . . . + C6). (17)

Rule 16 shows how to calculate the costs to revise a message using the cost predicate and vectors−→
R1,

−→
R2 whose individual elements are R1,From, R2,From, etc. andCj is the cost for changing R1,j

to R2,j . Also,
−→
C = C1,. . ., C6. Rule 17 calculates the minimum cost change by minimizing the

total cost of revision.

Definition 14 (System of policy modules).A system of policy modules,Γ, is given by a
finite set of policy modules, indexed by I. Thus Mi ranges over modules inΓ for i ∈ I. For any
i, j ∈ I, i 6= j, we have Loci ∩ Locj = ∅ ∧ Expi ∩ Expj = ∅. For suchi, j we write i@Γ j if
Expi ∩ Impj 6= ∅. Letting@∗Γ denote the transitive closure of@Γ, we require that∀ i ∈ I, i 6@∗Γ i
(irreflexivity), i.e., the relation@∗Γ is a partial order.

Definition 15 (Complete system of policy modules).A system of policy modules is a
complete system of policy modules if∀ i ∈ I Impi ⊂

⋃
j∈I∧j 6=i Expj

Theorem 1. A set of policy modules consisting of one of each policy module types: SP,
SPP-DM, SPP-RM, MSP, MRAP and SMn forms a complete system of policy modules.

Proof: We give an informal proof to show that the set of policy modulesΓ1 = {MSP,
MSPP-DM, MSPP-RM, MMSP, MMRAP} ∪ SMn satisfies all the criteria to be a complete
system of policy modules. By inspection, following properties can be ascertained in
a straightforward manner. Firstly, for each pair of distinct policy modules Mi and Mj

(i, j range over an index I1 of Γ1), Loci ∩ Locj = ∅ ∧ Expi ∩ Expj = ∅ holds. Secondly,
the relation@Γ1 is irreflexive and transitive (i.e., the condition∀ i ∈ I1, 6 ∃ k1,. . .,kn ∈
I1 such thati @∗Γ1

i, can be easily verified). Finally, to see the completeness property,
we construct a set

⋃
j∈I1

Impj and verify that
⋃

j∈I1
Impj ⊂

⋃
k∈I1

Expk. ¤

Notation 1 (System of email policy modules).A complete system of email policy modules
is represented byΓem, which is given by the set{Mi,SMj | i ∈ I1 and j∈ I2}, where I1 = {SP,
SPP-DM, SPP-RM, MSP, MRAP} and I2 = {1, . . ., k}, SM1,. . ., SMk ∈ SMn and each Mi,
SMj satisfies the appropriate definitions, 9 – 13, above. The combination of these indices is
represented by Iem = I 1 ∪ I2.

Theorem 2 (Stratification [22]). ∀ i ∈ I, the sets Pi and
⋃

i Pi are stratified.

Proof: Stratification for MSP may be obtained through the following level mapping [22,
2] `. ` assigns all imported predicates header, nonFinal, primMechj

and systV ark
, to

the level 1. Predicates checkEnv, fixEnv and Env are assigned the level 2; 3 is assigned
to all OL predicates; 4 is assigned to the RL predicates defined in Stratum 2 of the
policy; 5 is assigned to accept and 6 to revise.

Proceedings of CPSec 2005

39 of 75

MRAP Stratification is obtained in a similar manner as above, with the addition of
message, content, primNortan and primcrm1 to level 1.

Following level mapping,̀ , assigns strata to SPP predicates as follows: 0 is as-
signed to header, content, nonFinal, and icost. Level 1 is assigned cost. Level 6 is as-
signed to the IE predicates revise, revisea and RL predicates total, selectFix; nHeader
is assigned the level 7; relay, norelay to 8 and deliver is assigned to level 9.

The level mapping for SP is trivial, with canChange being assigned the level 0.
Similarly, all predicates defined in SMn modules are assigned to 0. The level mapping
for

⋃
i Pi is simply the union of the level mappings for individual policies. ¤

3.2 Semantics

We use a three-valued semantics, called Kunen-Fitting (or Kripke-Kleene) [13] seman-
tics, for interpreting our normal CLP programs. We use constructive negation [3] as
proposed by Fages [12]. We first repeat some standard definitions as they appear in [13]
and are repeated in [31].

Definition 16 (P∗, TP and ΦP ↑ operators). Suppose P is a policy module, and let P∗

be all ground instances of clauses in P. We now define two and three valued truth lattices to be
2 = 〈{T,F}, <2〉 and3 = 〈{T,F,⊥} <3〉 respectively, where T, F and⊥ are taken to mean true,
false and unknown truth values. Partial orderings<2 and<3 satisfy as F<2 T and⊥ <3 T,⊥
<3 F respectively. A mapping V from the herbrand base of P to2 or (respectively3) is said to
be a two-valued (respectively a three-valued) valuation of P. Any valuation is naturally extended
to negative literals according to the following interpretation of negation:¬T = F, ¬F = T and
¬⊥ = ⊥. Also,α ∨ β = T if α = T or β = T; α ∨ β = F if α = F and β = F; and α ∨ β = ⊥
otherwise.∨ extends pointwise to valuations. Given a valuations Vl and Vi, the two and three
valued immediate consequence operatorsT Vi

P (Vl, Vi) andΦVi
P (Vl, Vi) are defined as follows:

TVi
P (Vl,Vi): TVi

P (Vl,Vi) = W is defined as

• W(H) = T if there is a ground clause H← B in P∗ such that Vi(Bk) = T for all Bk ∈ B
constructed using a predicate in ImpP and Vl(Bm) = T for all Bm ∈ B constructed using
predicates not in ImpP .

• W(H) = F otherwise.

ΦVi
P (Vl,Vi): ΦVi

P (Vl,Vi) = W is defined as

• W(H) = T if there is a ground clause H← B in P∗ such that Vi(Bk) = T for all Bk ∈ B
constructed using a predicate in ImpP and Vl(Bm) = T for all Bm ∈ B constructed using
predicates not in ImpP .

• W(H) = F if for every ground clause H←B in P∗, Vi(Bk) = F for some Bk ∈B constructed
using a predicate in ImpP or Vl(Bm) = F for some Bm ∈ B constructed using predicates
not in ImpP .

• W(H) =⊥ otherwise.

Now we define bottom-up semantics for bothTP andΦP , whereΨ stands for either of them in
the following:

• ΨVi
P ↑ (0) = Vfalse, where Vfalse assigns F (false) to all instantiated atoms.

• ΨVi
P ↑ (α + 1) = ΨVi

P (ΨVi
P ↑ (α), Vi) for every successor ordinalα.

• ΨVi
P ↑ (α) =

∨
β<α (ΨVi

P ↑ (β)) for limit ordinal α.

Definition 17 (Bottom-up semantics).Let Pi ∈ Γ be a policy module andΦ be the three
valued consequence operator as defined above. We letΦVi

Pi
↑ (ω) be the semantics of P.

Proceedings of CPSec 2005

40 of 75

Definition 18 (Projection operator). Given a valuation V and a set of predicates P such that
V is defined over atoms constructed using predicates in P and possibly some other predicates,
projection V|P is the valuation defined over only atoms constructed using predicates in P and
having the same value as V on those atoms.

3.2.1 An example MSP Evaluation

Next we present a simple MSP policy module evaluation in an example.

Example 4. Policy module evaluation without feedback
Consider a message with only three headers:

Mail From: sender@abc.com (final); Rcpt To: recipient@xyz.com (final); X-Auth: ’Pass-
word’(final);

The Keyword ‘final’ in the headers indicates that they cannot be revised. More details on ‘final’
are given in section 3.2.2. We show the evaluation of the module described in example 1 next.
We assume that the sender does not belong to either the whitelist or the blacklist. In theΦVi

PMSP

computation, presented in table 4, we omit the ‘@abc.com’ part in sender address, and predicates
like rAllow, rDisallow, revise andfixEnv. We use meta-variable−→x to refer to a tuple of
constants,i.e., header values. Also, we only show the whitelist/blacklist predicate instances for
sender@abc.com.

Ordinal W (H)=T W (H)=F

1 {cHeader(Auth,‘Password’), cHeader(From,

‘sender’), . . .}
{whitelist(‘sender’), blacklist(‘sender’),. . . , nonFi-

nal(Auth), nonFinal(From),nonFinal(To)}
2 {cHeader(Auth,‘Password’), cHeader(From,

‘sender’), . . . , checkEnv(−→x) }
{whitelist(‘sender’), blacklist(‘sender’),. . . , nonFi-

nal(Auth), . . .}
3 {cHeader(Auth,‘Password’), cHeader(From,

‘sender’), . . . , checkEnv(−→x) }
{allow(−→x), disallow(−→x), whitelist(‘sender’), black-

list(‘sender’),. . . , nonFinal(Auth), . . .}
4 {cHeader(Auth,‘Password’), cHeader(From,

‘sender’), . . . , checkEnv(−→x) }
{ accept(−→x), allow(−→x), disallow(−→x), whitelist(‘sender’),

blacklist(‘sender’),. . . , nonFinal(Auth), . . .}

Table 4: ΦVi
PMSP

calculation for message acceptance

The fixpoint is reached at ordinal 4. SinceΦVi
PMSP

↑ (4) cannot proveaccept, the message is
rejected. The root cause is that the authentication provided in the message is inconsistent with
that required in the policy.

3.2.2 Message revision

The messages rejected, as in example 4, may be desirable to the recipient, and should
not be dropped without letting the sender know why they were dropped. If this infor-
mation is provided to the SPP, it can appropriately revise an initially rejected message
and, thus, successfully deliver it. To do so, we require a minor change in how messages
are documented. Message headers are required to include a qualifier, namely, ‘final’,
for every header that cannot be revised. This indicates to the MSP or the MRAP which
headers can be revised. This documentation is captured by the nonFinal(H) atom. Us-
ing the fixEnv(

−→
X) atom in the definitions of constructed predicates rAllow(

−→
X) and

rDisAllow(
−→
X), policy-desired constraints can be captured inrevisepredicate. Ground

instances ofreviseare exported by the evaluating module to indicate to the SPP, the
desired documentation in a rejected message.

Proceedings of CPSec 2005

41 of 75

Example 5. Policy module evaluation with message revision
Message rejected in example 4 can be revised if marked as follows:

Mail From: sender@abc.com (final); Rcpt To: recipient@xyz.com (final); X-Auth: ’Password’;

Here the SESP indicates that authentication can be upgraded, if required. Next we show the eval-
uation of the policy rules to revise this rejected message. TheΦVi

PMSP
computation is presented in

table 5. The fixpoint is reached at ordinal 5 andΦVi
PMSP

↑ (5) proves a revise(
−→
X ,

−→
Y) atom.

Ordinal W (H)=T W (H)=F

1 {nonFinal(Auth), cHeader(From,‘sender’),

cHeader(To,‘recipient’), cHeader(Auth,‘Password’)}
{nonFinal(From), nonFinal(To), whitelist(sender),

blacklist(sender), . . .}
2 {nonFinal(Auth), cHeader(From,‘sender’),

. . . , checkEnv(−→x), Env(From,‘sender’),

Env(To,‘recipient’), Env(Auth,)}

{nonFinal(From), nonFinal(To), whitelist(sender),

blacklist(sender), . . .}

3 {nonFinal(Auth), cHeader(From,‘sender’), . . . ,

checkEnv(−→x), Env(From,‘sender’), . . . , fixEnv(−→x)}
{allow(−→x), disallow(−→x), nonFinal(From), nonFi-

nal(To), whitelist(sender), blacklist(sender), . . .}
4 {nonFinal(Auth), cHeader(From,‘sender’), . . . ,

checkEnv(−→x), Env(From,‘sender’), . . . , fixEnv(−→x),

rAllow (−→x)}

{allow(−→x), disallow(−→x), nonFinal(From), non-

Final(To), whitelist(sender), blacklist(sender), . . . ,

accept(−→x), rDisallow (−→x)}
5 {nonFinal(Auth), cHeader(From,‘sender’), . . . ,

checkEnv(−→x), Env(From,‘sender’), . . . , fixEnv(−→x),

rAllow (−→x), revise(−→x ,−→y)}

{allow(−→x), disallow(−→x), nonFinal(From), non-

Final(To), whitelist(sender), blacklist(sender), . . . ,

accept(−→x), rDisallow (−→x)}

Table 5: ΦVi
PMSP

calculation for message revision

4 Materialization Structure
Section 3 establishes stratification [22] of each local policy module and their union.
This essentially allows each delivery attempt being treated as a new message delivery.
Thus, for a single message delivery attempt, the module graph is acyclic, as required
in [19]. There can be many strategies for exporting predicates, like, for instance, ‘one-
at-a-time’ transmission or ‘all-together’ transmission strategies. In our view, the second
approach can be more efficient in reducing communication overheads, and hence we
propose materializing exported predicates to support this strategy.

Definition 19 (Materialization Structure MS). The materialization structure,MSi, of
a module Mi is a valuation over atoms constructed using the Expi predicates.

Definition 20 (Correctness). Given a system of policy modulesΓ indexed by I, a corre-
sponding set of materialization structures also indexed by I, and ranged over byMSi, is correct
if ∀ i ∈ I MSi = ΦVi

Pi
↑ (ω) |Expi , where Vi =

⋃
j@Γi (MSj |Impi) (Here we are viewing the

functionMSj as sets of pairs. In this way combine these functions whose domains are disjoint).

Theorem 3 (Faithfulness and Adequacy).Given a complete system of policy modules
Γ, indexed by I, and a corresponding set of materialization structures also indexed by
I and ranged over byMSi,

⋃
i∈I MSi = Φ∅P ↑ (ω) |Exp, where P =

⋃
j∈I Pj , Exp =⋃

j∈I Expj .

Proof Strategy: The proof strategy of using induction overi would give the required
proof. ¤

Proceedings of CPSec 2005

42 of 75

Due to theorem 1, theorem 3 applies to the complete system of email policies,
which is significant for our application. The communication of imported-exported
predicates between modules is proposed through a materialization of individual (local)
modules. The evaluation of the next module,i.e., the module whose predecessor(s)
has (have) completed its (their) evaluation(s), depends upon the inputs from predeces-
sors. The significance of theorem 3 lies in the fact that it shows the correctness of
the ‘relative’ (local) evaluation scheme with respect to an evaluation scheme with the
possession of global knowledge.

5 Related work
Content based filtering and text categorization solutions, are current best response to
spam. A filter attempts to parse message content and use pattern matching with text
categorization to identify undesirable mail. Vast advances have been made in this field,
For example, in [4, 20, 14]etc., which claim to catch a majority of ‘junk’ mail. How-
ever, one of its main drawbacks is the problem of false negatives and false positives.
Since ‘all’ unwanted messages cannot be caught, spammers simply increase the vol-
ume of spam to achieve the same yield as before. Statistics show that spam is now
more than half the bandwidth of all mail messages sent and the cost of handling these
messages and transmitting them close to the destination has to be borne by the infras-
tructure. Hence, we provide a pro-active mechanism in this paper to stop unwanted
messages closer to the source.

Economic solutionsaddress the question of who pays for the cost of dealing with
spam. Allman [1] advocates developing techniques to share these costs between senders
and recipients, as a means to reduce spam incidences pro-actively. Works like [18, 6, 9]
provide a basis of such an approach. However, what is lacking is the translation of these
techniques to the SMTP. The authors do not show how their schemes can be incorpo-
rated incrementally in a backward-compatible manner to the email delivery protocol.
In our approach, which is based on [15], these solutions can be easily incorporated, by
expressing the (monetary) preferences in an MSP or MRAP policy and can be com-
bined with other anti-spam techniques. SLAP policy can slow down spammers, similar
to the computational and memory bound cost mechanisms above.

Reputation and trust based solutionsare dependent on establishing identity of the
sender, which is a significant problem in email. Based on identity, whitelists and black-
lists are defined, which can accept or reject messages respectively. Identity spoof-
ing mitigation and reputation based systems have been explored in various works
like [30, 21, 11], however, Friedhamet al. in [24] and Watson in [32] show that spoof-
ing problem is not easily solved. In any case, requirements like blacklists, whitelists,
DNS-specific requirements, trust-based requirements can be easily expressed in our
policies and combined together in an arbitrary fashion.

Network based solutionsuse network characteristics to discover and thwart spam.
Sender policy framework [25], reverse DNS checks [7] help solve spoofing by verifying
domain name against IP-address and fit well in our SLAP policy. Realtime Blackhole
Lists (RBLs) [23] serve as a reputation service that reports spammer IP addresses,
which would enhance the MRAP policies. Message reputations schemes [8, 28, 27]
are used to identify ‘bulk mail’ and would fit well in our policies. Clayton’s extrusion
detection technique [5] is a novel idea, easily supported in our framework through SPP

Proceedings of CPSec 2005

43 of 75

policies. Li’s TCP damping approach [17] can be a part of our SLAP policy. Our
policies can combine low level network attributes with high level attributes like spam
index, bond amountetc., powerful anti-spam mechanisms can be constructed.

6 Conclusion
As noted by Leibaet al.[16], protection against receiving undesirable messages is hard
to obtain, unless, we can combine different types of available techniques that stop such
messages at their own level. However, existing literature shows that, so far, flexible
and extensible combinations of techniques have not been successfully provided. To
this end, we propose a policy-based approach to flexibly combine available email con-
trol techniques, and provide a CLP-based mechanism to evaluate such policies. By
incorporating minor changes into the way messages are constructed, we are able to
extend our mechanism to provide constructive feedback to the senders, such that, de-
sirable messages that do not meet evaluation policy requirements, can be ‘revised’ and
hence make it to their destination. This approach is a vast improvement over the cur-
rent practice, where desirable messages are killed if they get ‘flagged’ by spam filters.
Thus, by minimizing the risk of dropping desirable messages, our scheme enables pol-
icy authors to effectively use precise criteria for message acceptance, a goal that could
not be realized in the current message transmission framework. Of course, this risks in
leaking private information, such as, content of ESP maintained blacklists, whitelists
etc., but policy communications can be sanitized. We can handle this requirement effi-
ciently in our framework, but it is out of scope of current work and we plan to treat it
elsewhere.

Acknowledgement
We thank the anonymous reviewers for their valuable comments on improving the pre-
sentation of this paper.

References
[1] E. Allman. The economics of spam. http://www.acmqueue.com/modules.php?

name=Content&pa=showpage&pid=108.
[2] K. R. Apt, H. A. Blair, and A. Walker. Towards a theory of declarative knowledge.Foun-

dations of Deductive Databases and Logic Programming, pages 89–148, 1988.
[3] D. Chan. Constructive negation based on the completed databases. InInternational con-

ference on logic programming (ICLP), pages 111–125, 1988.
[4] S. Chhabra, W. S. Yerazunis, and C. Siefkes. Spam filtering using a markov random

field model with variable weighting schemas. InICDM’04: Fourth IEEE International
Conference on Data Mining, To appear 2004.

[5] R. Clayton. Stopping spam by extrusion detection. InCEAS 2004: First Conference on
Email and Anti-Spam, July 2004.

[6] R. Dai and K. Li. Shall we stop all unsolicited email messages? InCEAS 2004: First
Conference on Email and Anti-Spam, July 2004.

[7] Danisch.de: Defense against spam and E-Mail forgery.
http://www.danisch.de/work/security/ antispam.html.

[8] Distributed Checksum clearinghouse. http://rhyolite.com/anti-spam/dcc/.
[9] C. Dwork, A. Goldberg, and M. Naor. On memory-bound functions for fighting spam. In

CRYPTO’03: Advances in cryptology, 2003.

Proceedings of CPSec 2005

44 of 75

[10] C. Dwork and M. Naor. Pricing via processing or combatting junk mail. InCRYPTO’92:
Advances in cryptology, 1992.

[11] Email Service Provider Coalition. Project Lumos.
http://www.networkadvertising.org/espc /lumoswhite paper.asp, Sept 2003.

[12] F. Fages. Constructive negation by pruning.Journal of Logic Programming, 32/2, 1997.
[13] M. C. Fitting. A kripke-kleene semantics for logic programs.Journal of Logic Program-

ming, 2/4:295–312, 1985.
[14] A. Gray and M. Haahr. Personalized collaborative spam filtering. InCEAS 2004: First

Conference on Email and Anti-Spam, July 2004.
[15] S. Kaushik, P. Ammann, D. Wijesekera, W. Winsborough, and R. Ritchey. A policy driven

approach to email services. InIEEE 5th International Workshop on Policies for Distributed
Systems and Networks, New York, June 2004.

[16] B. Leiba and N. Borenstein. A multifaceted approach to spam reduction. InCEAS 2004:
First Conference on Email and Anti-Spam, July 2004.

[17] K. Li, C. Pu, and M. Ahamad. Resisting spam delivery by tcp damping. InCEAS 2004:
First Conference on Email and Anti-Spam, July 2004.

[18] T. Loder, M. V. Alstyne, and R. Wash. An economic solution to the spam problem. In5th
ACM conference on Electronic Commerce, 2004.

[19] M. J. Maher. A transformation system for deductive database modules with perfect model
semantics.Theoretical Computer Science, 110:377–403, 1993.

[20] E. Michelakis, I. Androutsopoulos, G. Paliouras, G. Sakkis, and P. Stamatopoulos. Filtron:
A learning-based anti-spam filter. InCEAS 2004: First Conference on Email and Anti-
Spam, July 2004.

[21] M. Naor. Verification of a human in the loop or identification via the turing test.
http://www.wisdom.weizmann.ac.il/ñaor/ PAPERS/humanabs.html, 1996.

[22] T. C. Przymusinski. On the declarative semantics of stratified deductive databases and logic
programs.Foundations of Deductive Databases and Logic Programming, pages 193–216,
1987.

[23] Realtime Blackhole List. http://www.kelkea.com/.
[24] P. Resnick, R. Zeckhauser, E. Friedman, and K. Kuwabara. Reputation systems.Commu-

nications of the ACM, 43(12):45–48, December 2000.
[25] Sender Policy Framework. http://spf.pobox.com.
[26] Simple Mail Transfer Protocol. RFC 2821, Apr 2001.
[27] Spam URI Realtime Blocklist. http://surbl.org/.
[28] SpamNet. http://www.cloudmark.com.
[29] P. J. Stuckey. Negation and constraint logic programming.Information and Computation,

118/1:12–33, 1995.
[30] T. Tomkins and D. Handley. Giving email back to the users: using digital signatures to

solve the spam problem.First Monday, 8(9), September 2003.
[31] L. Wang, D. Wijesekera, and S. Jajodia. A logic based framework for attribute based access

control. In2nd ACM Workshop on Formal Methods in Security Engineering (FMSE 2004),
pages 110–122, October 2004.

[32] B. Watson. Beyond identity: Addressing problems that persist in an electronic mail system
with reliable sender identification. InCEAS 2004: First Conference on Email and Anti-
Spam, July 2004.

Proceedings of CPSec 2005

45 of 75

Heuristics for enforcing security constraints

Flemming Nielson Hanne Riis Nielson

Informatics and Mathematical Modelling, Richard Petersens Plads bldg. 321,
Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark

{nielson|riis}@imm.dtu.dk

Abstract. The flow logic approach to static analysis amounts to ax-
iomatising the admissibility of solutions to analysis problems; when ax-
iomatised using formulae in stratified alternation-free least fixed point
logic one may use efficient algorithms for computing the least admissible
solutions. We extend this scenario to validate the fulfilment of additional
constraints on admissible solutions; the modified development produces
a least solution together with a boolean value indicating whether or not
the constraints are validated or violated. — Our main contribution is the
development of a deterministic heuristics for obtaining a solution that is
close to the least solution while enforcing the validation of the security
constraints. We illustrate it on the Bell-LaPadula mandatory access con-
trol policy where the heuristics is used to suggest modifications to the
security annotations of entities in order for the security policy to hold.

1 Introduction

The goals of the paper are perhaps best explained by means of an analogy. In
the world of type systems one frequently distinguishes between soft typing and
strong typing. In soft typing all programs can be typed (possibly with an ever
encompassing top type) and the goal is to use types to provide as much mean-
ingful information about subprograms as possible. In strong typing the whole
point of the type system is to reject certain programs as being ill-formed (in-
cluding those that might lead to certain kinds of errors when executed) whereas
providing meaningful information about subprograms is an important secondary
aim. Indeed, the slogan of strong typing is that “well typed programs cannot go
wrong” [8]. We might say that soft typing focuses on solving a type inference
problem whereas strong typing focuses on enforcing the solvability of a type
inference problem (which admittedly involves a solving phase as well) subject to
additional constraints.

In this paper we consider the world of static analysis as embodied in data
flow and control flow analysis. Here the view traditionally is that of solving
an analysis problem in order to provide information that may be useful e.g. in
case of a compiler generating better than naive code. When viewed in the general
framework of abstract interpretation [5, 9] one usually establishes a Moore Family
result showing that a least solution always exists. Given a problem cls we shall

Proceedings of CPSec 2005

46 of 75

write S(cls) for the least solution ρ. In Section 2 we slightly extend our approach
[11, 10] based on formulae in stratified alternation-free least fixed point logic.

Solutions to static analysis problems are increasingly being used also for
software validation, e.g. for enforcing security policies. Quite frequently it is
possible to formulate such policies as sets of constraints upon the solution S(cls).
Given a problem cls with embedded constraints we shall write V(cls) for the least
solution ρ, as computed by S(cls), together with a boolean value b indicating
the truth value of the constraints. In Section 3 we develop an extension of our
approach where constraints are an integral part of the logical formalism. This
development is illustrated on an example showing how to enforce that programs
in a functional language never attempt to perform a function call unless the
value applied is indeed a function.

This paves the way for Section 4 where we consider how to deal with a
problem cls that cannot be validated, i.e. a problem cls for which V(cls) =
(ρ, false). Here our goal is to develop a deterministic heuristics for finding a
small modification % to the solution ρ such that the problem can be validated
under the assumption that the behaviour of % can be admitted. This idea has
in part been inspired by the non-standard approach to fixpoints explored in [7]
and in our case amounts to an iterative approach to recalculating solutions. The
desired result of our heuristics isH(cls) = (ρ, %) where % is the small modification
deemed necessary and ρ is the resulting least solution for which the constraints
can be enforced; we may write this as V(cls @%) = (ρ, true) where cls @% is a
syntactic mechanism used to enforce that ρ ⊇ %.

The main motivating example for this development is from the world of
mandatory access control policies. Here % might indicate additional entities to
be considered to be within the Trusted Computing Base; we present an example
showing how to formulate the Bell-LaPadula mandatory access control policy
[2, 6] and how to use the heuristics for suggesting modifications to the security
annotations of entities in order for the security policy to hold.

2 Stratified ALFP and the Succinct Solver

Syntax. The Alternation-free fragment of Least Fixpoint Logic (ALFP) extends
Horn clauses by allowing both existential and universal quantifications in pre-
conditions, negative queries (subject to the notion of stratification), disjunctions
of preconditions, and conjunctions of conclusions.

Definition 1. Given a fixed countable set X of variables, a finite alphabet R
of predicate symbols (where all arities are at least 1) we define the set of ALFP
formulae (or clause sequences), cls, together with clauses, cl, and preconditions,
pre, by the grammar

pre ::= R (x1, · · · , xn) | ¬R (x1, · · · , xn)
| pre1 ∧ pre2 | pre1 ∨ pre2 | ∃x : pre | ∀x : pre

cl ::= R (x1, · · · , xn) | 1 | cl1 ∧ cl2 | ∀x : cl | pre ⇒ cl

cls ::= cl1, · · · , clk

2

Proceedings of CPSec 2005

47 of 75

where x ∈ X , R ∈ R and k is at least 1.

Occurrences of R and ¬R in preconditions are called queries and negative queries,
respectively, whereas the other occurrences of R are called assertions of the
predicate R. We write 1 for the always true clause.

Stratification. In order to ensure desirable theoretical and pragmatic proper-
ties in the presence of negation, we introduce a notion of stratification similar to
the one in Datalog [4, 1]. Intuitively, stratification ensures that a negative query
is not performed until the predicate queried has been fully asserted. This is im-
portant for ensuring that once a precondition evaluates to true it will continue
doing so even after further assertions of predicates.

Definition 2. We say that a formula cls is stratified w.r.t. rank whenever it
has the form cls = cl1, · · · , clk, and the function rank : R → {0, · · · , k} satisfies
the following properties for all i = 1, · · · , k:

1. rank(R) ≥ i for every assertion R in cli;
2. rank(R) ≤ i for every positive query R in cli; and
3. rank(R) < i for every negative query ¬R in cli.

We say that a formula cls is stratified if there exists a ranking function rank
such that cls is stratified w.r.t. rank.

Not all formulae are stratified and a formula may be stratified w.r.t. some
ranking functions but not stratified w.r.t other ranking functions. Given a for-
mula cls = cl1, · · · , clk one can construct an optimal ranking function rank,
i.e. one that makes cls stratified w.r.t. rank if and only if cls is stratified, by
setting rank(R) = k if there are no (positive or negative) queries to R in cls,
otherwise setting rank(R) = 0 if there are no assertions to R in cls, and setting
rank(R) = i if cli is the rightmost clause containing an assertion to R.

Stratifiability. Sometimes a clause does not have the form of a formula that
is stratified w.r.t. some ranking function rank although it can easily be rear-
ranged into such a formula. This is possible if for each subclause · · ·R · · · ⇒
· · ·S · · · we have that rank(R) ≤ rank(S) and furthermore, if for each subclause
· · · ¬R · · · ⇒ · · ·S · · · we have that rank(R) < rank(S). We shall say that a clause
cl is stratifiable w.r.t rank whenever these conditions are met. One approach to
obtaining a stratified formula cls from the clause cl is simply to construct it as
cls = cl1, · · · , clk where each cli is obtained from cl by replacing assertions of
rank different from i with the clause 1.

In a similar vein a clause cl is stratifiable if it is possible to construct a ranking
function rank such that the clause is stratifiable w.r.t. rank . An easy test for
this condition is to build a graph with predicate symbols as nodes (called R and
S below) and two kinds of edges; there is a normal edge from R to S if the
clause contains a subclause · · ·R · · · ⇒ · · ·S · · · and there is a fat edge from R
to S if the clause contains a subclause · · · ¬R · · · ⇒ · · ·S · · · . Then the clause is
stratifiable if and only if there is no loop containing a fat edge.

Stratifiable clauses are accepted by a preprocessor to the Succinct Solver [10]
and are turned into appropriately stratified formulae which are then solved.

3

Proceedings of CPSec 2005

48 of 75

(ρ, σ) |= R (x1, · · · , xn) iff (σ(x1), · · · , σ(xn)) ∈ ρ(R)
(ρ, σ) |= ¬R (x1, · · · , xn) iff (σ(x1), · · · , σ(xn)) 6∈ ρ(R)
(ρ, σ) |= pre1 ∧ pre2 iff (ρ, σ) |= pre1 and (ρ, σ) |= pre2

(ρ, σ) |= pre1 ∨ pre2 iff (ρ, σ) |= pre1 or (ρ, σ) |= pre2

(ρ, σ) |= ∃x : pre iff (ρ, σ[x 7→ a]) |= pre for some a ∈ U
(ρ, σ) |= ∀x : pre iff (ρ, σ[x 7→ a]) |= pre for all a ∈ U

(ρ, σ) |= R (x1, · · · , xn) iff (σ(x1), · · · , σ(xn)) ∈ ρ(R)
(ρ, σ) |= 1 iff true
(ρ, σ) |= cl1 ∧ cl2 iff (ρ, σ) |= cl1 and (ρ, σ) |= cl2
(ρ, σ) |= ∀x : cl iff (ρ, σ[x 7→ a]) |= cl for all a ∈ U
(ρ, σ) |= pre ⇒ cl iff (ρ, σ) |= cl whenever (ρ, σ) |= pre

(ρ, σ) |= cl1, · · · , clk iff (ρ, σ) |= cl1 and · · · and (ρ, σ) |= clk

Table 1. Semantics of preconditions, clauses and formulae.

Constraint Satisfaction. We take a pure approach where the logic is inter-
preted over a universe U of constants. Given interpretations ρ and σ for predicate
symbols and variables, respectively, we define the satisfaction relations for pre-
conditions (denoted (ρ, σ) |= pre), for clauses (denoted (ρ, σ) |= cl), and for
formulas (denoted (ρ, σ) |= cls) as in Table 1. In particular, we write ρ(R) for
the set of n-tuples (a1, · · · , an) from Un associated with the n-ary predicate R
and σ(x) for the element of U denoted by the variable x.

We shall mainly be interested in closed formulae cls, i.e. clause sequences that
have no free variables. Hence the choice of the interpretation σ is immaterial,
so we can fix an arbitrary interpretation σ0. We then call an interpretation ρ of
the predicate symbols, a solution to the formula cls provided (ρ, σ0) |= cls.

Let ∆ be the set of interpretations ρ of predicate symbols in R over U and
let rank be a fixed ranking function.

Definition 3. The lexicographical ordering v is defined by ρ1 v ρ2 if and only
if there is some j ∈ {0, · · · , k} such that the following properties hold:

• ρ1(R) = ρ2(R) for all R ∈ R with rank(R) < j
• ρ1(R) ⊆ ρ2(R) for all R ∈ R with rank(R) = j
• either j is maximal in rank or ρ1(R) ⊂ ρ2(R) for at least one R ∈ R with

rank(R) = j

The subset-ordering ⊆ is given by ρ1 ⊆ ρ2 whenever ∀R ∈ R : ρ1(R) ⊆ ρ2(R).

Fact 1. If ρ1 ⊆ ρ2 then ρ1 v ρ2 (but not necessarily vice versa).

Proof. Let j′ ∈ {−1, · · · , k} be maximal such that rank(R) ≤ j′ =⇒ ρ1(R) =
ρ2(R) and let j be the smaller of j′ + 1 and k; then it is immediate to show
that ρ1 v ρ2 using that ρ1 ⊆ ρ2. (Conversely, consider ρ1(R1) = ρ2(R2) = ∅ and
ρ1(R2) = ρ2(R1) = {·} where rank(Ri) = i; then ρ1 v ρ2 holds (take j = 1) but
ρ1 ⊆ ρ2 fails.) 2

4

Proceedings of CPSec 2005

49 of 75

Proposition 1 (from [10]). The set ∆ = (∆, v) forms a complete lattice.
The solution set ∆cls = {ρ ∈ ∆ | (ρ, σ0) |= cls} forms a Moore family, i.e. it

is closed under greatest lower bounds (w.r.t. v), whenever cls is a closed and
stratified formula.

The Succinct Solver. In the sequel we shall only be interested in the least
solution ρ as guaranteed by the above proposition; formally it is given by

S(cls) = u{ρ ∈ ∆ | (ρ, σ0) |= cls}

and is the solution computed by the Succinct Solver [10].
For the purposes of this paper it suffices with the following imprecise account

of the operation of the Succinct Solver; the actual algorithm [10] operates in
a considerably more intelligent manner. Given a stratified clause cls we may
construct two functionals Ncls and Fcls. For this we shall write ρ = ρ1 ∪ · · · ∪ρk

where each ρi defines the predicates of rank i (where we assume for simplicity of
presentation that all predicates have non-zero rank). We set Ncls(ρ1∪· · ·∪ρk) =
(%1 ∪ · · · ∪ %k) whenever %1 ∪ · · · ∪ %k constitutes the new contribution to the
predicates arising from one pass through cls. Then we set

Fcls(ρ) =
{

ρ if Ncls(ρ) = (⊥, · · · ,⊥)
ρ ∪ %i if Ncls(ρ) = (⊥, · · · , %i, · · ·) and %i 6= ⊥

where the intention is that i indicates the first component of Ncls(ρ) that is not
⊥. The Succinct Solver may then be described as operating until stabilisation of
Fcls, i.e. S(cls) = tiF

i
cls(⊥, · · · ,⊥).

For a partial order ≤ (e.g. v or ⊆) we shall say that the functional F is
≤-monotonic if ∀ρ1, ρ2 : ρ1 ≤ ρ2 =⇒ F (ρ1) ≤ F (ρ2) and ≤-extensive if
∀ρ : ρ ≤ F (ρ). We then have:

Fact 2. The functional Fcls is ⊆-extensive and v-extensive. (The functional
need not be ⊆-monotonic nor v-monotonic.)

Proof. That Fcls is ⊆-extensive is obvious by construction; that Fcls is v-
extensive follows from Fact 1. (To see that Fcls need not be v-monotonic con-
sider the scenario in the proof of Fact 1 and take cls = R1(·). To see that
Fcls need not be ⊆-monotonic take ρi(Rj) = ∅ except ρ2(R1) = {·} and take
cls = ¬R1(·) ⇒ R2(·).) 2

3 Constraints on ALFP

Example 1. As a motivating example consider a simple functional language

el ::= ttl | ffl | xl | (λx.el0
0)l | (el1

1 el2
2)l | (if el0

0 then el1
1 else el2

2)l

where el ranges over labelled expressions. A control flow analysis keeps track of
which values (truth values and lambda abstractions) reach which points in the

5

Proceedings of CPSec 2005

50 of 75

program. We axiomatise it using these predicates:

C(l, v) indicates that the set of values arising at a subexpression labelled l may
contain the value v,

R(x, v) indicates that in the environment the variable x may be bound to the
value v,

P(l, v) indicates that the value v may be an actual parameter to a λ-abstraction
whose body is labelled l,

B(v) indicates that v is a boolean value in the program,
A(l) indicates that l labels the body of a λ-abstraction in the program.

For each subprogram of a given program we then generate clauses as follows:

ttl 7→ C(l, tt) ∧ B(tt)
ffl 7→ C(l,ff) ∧ B(ff)
xl 7→ ∀v : R(x, v) ⇒ C(l, v)

(λx.el0
0)l 7→ C(l, l0) ∧A(l0) ∧ ∀v : P(l0, v) ⇒ R(x, v)

(el1
1 el2

2)l 7→ ∀u : C(l1, u) ⇒ ((∀v : C(l2, v) ⇒ P(u, v))∧
(∀w : C(u, w) ⇒ C(l, w)))

(if el0
0 then el1

1 else el2
2)l 7→ ∀v : (C(l1, v) ∨ C(l2, v)) ⇒ C(l, v)

Here the variables (like u, v and w) range over the universe U that consists
of the basic values tt and ff and all labels. In the clause for an application
(el1

1 el2
2)l a typical value of u will be some label l0 denoting a λ-abstraction.

The overall clause generated for the entire program is the conjunction of all the
clauses above. It is clearly a stratifiable clause w.r.t. a rank function given by
rank(B) = rank(A) = 1 and rank(C) = rank(R) = rank(P) = 2.

In order to validate the correct behaviour of the program it would be prudent
to impose constraints ensuring that only functions are applied to arguments and
that only booleans are used to discriminate between branches of conditionals.
Such constraints can be checked by evaluating the following formulae on the
least solution to the clause generated above:

for an application (el1
1 el2

2)l check that ∀u : C(l1, u) ⇒ A(u), and
for a conditional (if el0

0 then el1
1 else el2

2)l check that ∀u : C(l0, u) ⇒ B(u).

It would be preferable if the constraints could be integrated with the specification
of the clause generation. However, this is not possible because rather than giving
rise to a constraint that may evaluate to false, it would give rise to merely adding
new “spurious elements” to the predicates A and B like asserting A(ff), A(tt) or
B(l0). In this respect it is worth pointing out that the least solution as produced
by S ensures that no such “spurious elements” are part of the least solution
(because they are not explicitly demanded to be so by the clause constructed
above). 2

Constrained ALFP. We therefore extend the syntax of ALFP by allow-
ing explicit occurrences of constraints. We distinguish between an assertion
R(x1, · · · , xn) and a constraint by writing the latter as R!(x1, · · · , xn).

6

Proceedings of CPSec 2005

51 of 75

ignore enforce observe

R!(x) 1 R (x) ¬R (x) ⇒ RE (x)
R (x) R (x) R (x) R (x)
1 1 1 1
cl1 ∧ cl2 ignore(cl1) ∧ ignore(cl2) enforce(cl1) ∧ enforce(cl2) observe(cl1) ∧ observe(cl2)
∀x : cl ∀x : ignore(cl) ∀x : enforce(cl) ∀x : observe(cl)
pre ⇒ cl pre ⇒ ignore(cl) pre ⇒ enforce(cl) pre ⇒ observe(cl)

cl1, · · · , clk ignore(cl1), · · · , ignore(clk) enforce(cl1), · · · , enforce(clk) observe(cl1), · · · , observe(clk)

Table 2. Ignoring, enforcing or observing the constraints in clauses and formulae.

Definition 4. The set of constrained ALFP clauses, cl, are given by

cl ::= R!(x1, · · · , xn) | R (x1, · · · , xn) | 1 | cl1 ∧ cl2 | ∀x : cl | pre ⇒ cl

whereas constrained preconditions and formulae are as in Definition 1.
We say that a constrained formula cls is stratified w.r.t. rank whenever it has

the form cls = cl1, · · · , clk, and the function rank : R → {0, · · · , k} satisfies the
following properties for all i = 1, · · · , k:

1. rank(R) < i for every constraint R! in cli;
2. rank(R) ≥ i for every assertion R in cli;
3. rank(R) ≤ i for every positive query R in cli; and
4. rank(R) < i for every negative predicate ¬R in cli.

We say that a constrained formula cls is stratified if there exists a ranking
function rank such that cls is stratified w.r.t. rank.

In the definition of stratified we have taken the view (to become even clearer
when discussing constraint violations below) that a predicate should not be used
as a constraint until it has been fully asserted.

The optimal ranking function is constructed much as before: rank(R) = k
if there are no (positive or negative) queries to R nor constraints on R in cls,
otherwise rank(R) = 0 if there are no assertions to R in cl, and rank(R) = i if
cli is the rightmost clause containing an assertion to R.

The considerations of stratifiability apply mutatis mutandis; as before there is
a normal edge from R to S if the clause contains a subclause · · ·R · · · ⇒ · · ·S · · ·
and there is a fat edge from R to S if the clause contains a subclause · · · ¬R · · · ⇒
· · ·S · · · . (In both cases S denotes an assertion rather than a constraint.) Much
as before a constrained clause cl is stratifiable if and only if there is no loop
containing a fat edge. However, when constructing the stratified formula cls we
may have to introduce a new rank k + 1 and construct it as cls = cl1, · · · , clk+1

where each cli is obtained from cl by replacing assertions of rank different from
i with the clause 1 and furthermore replacing constraints of rank different from
i−1 with the clause 1. As an example, the clause R(a) ⇒ (R(b)∧R!(c)) becomes
R(a) ⇒ (R(b) ∧ 1), R(a) ⇒ (1 ∧R!(c)).

7

Proceedings of CPSec 2005

52 of 75

Constraint Validation. We shall deal with the semantics of constrained ALFP
in a syntactic manner, by defining two ways in which to translate a constrained
formula into a formula of ALFP.

The function ignore simply replaces · · ·R!(x̄) · · · by · · ·1 · · · and hence
ignores the constraints imposed (see Table 2 for the details):

ignore(· · ·R!(x) · · ·) = · · ·1 · · ·

It is useful for extracting the constraint-free part of the formula for which the
least solution is desired. If cls is a stratified and constrained formula then clearly
ignore(cls) is a stratified formula of ALFP.

Similarly, the function enforce replaces · · ·R!(x̄) · · · by · · ·R(x̄) · · · and
hence ignores the distinction between constraints and assertions (see Table 2 for
the details):

enforce(· · ·R!(x) · · ·) = · · ·R(x) · · ·

It is useful for extracting a formula that can be used to check whether or not
the constraints are fulfilled. However, even if cls is a stratified and constrained
formula, the formula enforce(cls) need not be a stratified formula of ALFP; as
an example consider 1,¬R(a) ⇒ R!(b) where R has rank 1.

Given a closed, stratified and constrained formula cls, we may define the
validation function V(cls) = (ρ, b) as follows:

V(cls) =
let ρ = S(ignore(cls)) in
let b = ((ρ, σ0) |= enforce(cls)) in
(ρ, b)

Here V(cls) = (ρ, b) means that ρ is the least solution when ignoring the con-
straints and b indicates whether or not the constraints are validated.

Example 2. Returning to Example 1 we can now write the clauses to be gener-
ated for application and conditionals as follows:

(el1
1 el2

2)l 7→ ∀u : C(l1, u) ⇒ (A !(u)∧
(∀v : C(l2, v) ⇒ P(u, v))∧
(∀w : C(u, w) ⇒ C(l, w)))

(if el0
0 then el1

1 else el2
2)l 7→ ∀u : C(l0, u) ⇒ B !(u) ∧

∀v : (C(l1, v) ∨ C(l2, v)) ⇒ C(l, v)

These clauses are stratifiable w.r.t. the rank function of Example 1. Furthermore,
ignore translates the clauses generated into clauses that are logically equivalent
to the ones of Example 1, whereas enforce translates the clauses generated into
clauses that are logically equivalent to the conjunction of the ones of Example
1 together with the constraints imposed there. 2

8

Proceedings of CPSec 2005

53 of 75

Constraint Violation. An alternative approach to calculating V(cls) = (ρ, b)
where b indicates whether or not the least solution ρ validates the constraints is
to directly record the violations to the constraints, if any. This corresponds to
making use of so-called observation predicates [3] for tracking the violations to
constraints. Intuitively we should be able to show that the constraints are vali-
dated if and only if there are no violations; this will be the result of Proposition
2 below.

To describe the alternative approach we define a function observe that
translates · · ·R!(x̄) · · · to · · · (¬R(x̄) ⇒ RE(x̄)) · · · where we assume that to
each “ordinary” predicate R there potentially is an “observation” predicate RE

(see Table 2 for the details):

observe(· · ·R!(x) · · ·) = · · · ¬R(x) ⇒ RE(x) · · ·

We shall write R◦ for the set of ordinary predicates and RE for the set of
observation predicates and assume that R is the disjoint union of these two sets.
Furthermore, we extend the given ranking function rank by setting rank(RE) =
k + 1 for all observation predicates RE (regardless of the rank of R).

We can now explain the use of observation predicates as an alternative strat-
egy for definining the validation function V:

Proposition 2. V(cls) = (ρ, b) holds if and only if

ρ = S(observe(cls)) |R◦

b =
∧

RE∈RE (ρ(RE) = ∅)

where · · · |R◦ denotes the restriction to ordinary predicates only.

4 Heuristics for Success

Example 3. As a fairly substantial motivating example consider a simplified pre-
sentation of the Bell-LaPadula mandatory access control policy for enforcing
confidentiality [2, 6]. The basic entities are subjects (e.g. programs or users),
objects (e.g. files), operations (read and write) and security levels (high and
low).

The actual operations are specified by statements of the form read(s, o)
for indicating that the subject s is initiating a read-operation on the object o
and similarly write(s, o) for indicating that the subject s is initiating a write-
operation on the object o.

The discretionary part of the access control policy is syntactically specified
by statements of the form readable(o : s1, · · · , sn) for indicating that the ob-
ject o may be read by any one of the subjects s1, · · · , sn and by writable(o :
s1, · · · , sn) for indicating that the object o may be written by any one of the
subjects s1, · · · , sn.

The mandatory part of the access control policy is syntactically specified
by statements of the form subject(s : φ) for indicating that the subject s is

9

Proceedings of CPSec 2005

54 of 75

allowed to operate at security level φ (being one of H or L) and by object(o : φ)
for indicating that the object o may be accessed at security level φ (being one
of H or L).

For the purposes of specifying the security policy we shall view the semantics
as operating over configurations of the form (S, O, M, B). Here S(s, φ) records
that the subject s has been previously allowed to operate at security level φ; in
the classical presentation [6] it aims at capturing fC(s) = fS(s) = φ. Similarly,
O(s, φ) records that the object o has been previously allowed to be manipulated
at security level φ; in the classical presentation [6] it aims at capturing fO(o) = φ.
Furthermore, M(s, o, r) captures that the object o has previously been recorded
as readable by subject s and M(s, o, w) captures that the object o has previously
been recorded as writable by subject s; this is as in the classical presentation [6].
Finally, B(s, o, r) indicates that in the current state the subject s has initiated
reading the object o and B(s, o, w) indicates that in the current state the subject
s has initiated writing the object o; also this is as in [6].

We shall develop a simple flow-insensitive analysis for keeping track of these
operations and for enforcing the Bell-LaPadula mandatory access control policy
(called mac and formally defined below). Since it is flow-insensitive it may op-
erate over an “abstract state” (S, O, M, B) as explained above. For the various
operations we generate constraints as follows:

read(s, o) 7→ B(s, o, r) ∧mac
write(s, o) 7→ B(s, o, w) ∧mac

readable(o : s1, · · · , sn) 7→ M(o, s1, r) ∧ · · · ∧M(o, sn, r)
writable(o : s1, · · · , sn) 7→ M(o, s1, w) ∧ · · · ∧M(o, sn, w)

subject(s : φ) 7→ S(s, φ)
object(o : φ) 7→ O(o, φ)

The clause for the Bell-LaPadula mandatory access control policy is:

mac =


∀s, o, o′ : B(s, o, w) ∧B(s, o′, r)

⇒ M !(s, o, w) ∧M !(s, o′, r) ∧
(S(s, H) ∧ ¬S(s, L)) ⇒ O!(o, H) ∧
(O(o, L) ∧ ¬O(o, H)) ⇒ (S!(s, L) ∧O!(o′, L)) ∧
(O(o′, H) ∧ ¬O(o′, L)) ⇒ (O!(o, H) ∧ S!(s, H)) ∧
(S(s, L) ∧ ¬S(s, H)) ⇒ O!(o′, L)


Here the first line considers a situation where a subject s is simultaneously
writing an object o and reading an object o′. The second line enforces that
these operations have indeed been previously allowed as indicated by the access
control matrix M . The remaining lines enforce that the security classification of
o dominates those of s, o′ and that the security classification of o′ is dominated
by those of s, o (relying once more on fC = fS in the classical presentation of
[6]).

The clause generated is clearly stratifiable. A simple choice of a ranking
function is to take rank(S) = 1, rank(O) = 1, rank(M) = 1 and rank(B) = 1.

10

Proceedings of CPSec 2005

55 of 75

A more interesting choice (as we shall argue shortly) is to take rank(S) = 1,
rank(O) = 2, rank(M) = 3 and rank(B) = 4.

To be a bit more concrete consider a program involving one subject sub and
two objects ob1 and ob2:

subject(sub:H);
object(ob1:L); readable(ob1:sub); writable(ob1:sub);
object(ob2:L); readable(ob2:sub); writable(ob2:sub);
read(sub,ob2); write(sub,ob1);

Here there is a violation of the mandatory part of the access control policy:
when sub reads ob2 and writes ob1 the security level of sub (which is H) must
be dominated by that of ob1 (which is L).

Assuming that the program is intended to be legitimate we must modify the
security annotations such that mac holds. Intutively, there are two ways to do
so: one is to downgrade sub to L, the other is to upgrade ob1 to H. From a
security policy point of view it is usually preferred to upgrade the objects rather
than downgrading the subjects (see [6] for a discussion). In the present case this
means that we prefer to add “spurious elements” to relations like O rather than
relations like S.

Hence we would like a general heuristists that, based on the rank-information
automatically suggests remedial actions. We shall decide to go for an approach
where we prefer to remedy the values of higher-rank relations rather than lower-
rank relations; in operational terms this means restricting how far the Succinct
Solver needs to backtrack and corresponds to its overall mode of operation as
described in Section 2. In the present case this suggests taking rank(S) = 1,
rank(O) = 2, rank(M) = 3 and rank(B) = 4. 2

Acceptable heuristics. So far we have been content with an optimal algo-
rithm S for solving an analysis problem expressed by a closed and stratified
formula, and an optimal algorithm V for solving and validating the constraints
as expressed by a closed and stratified constrained formula.

Turning to the construction of a heuristic algorithm H we shall shortly for-
mulate a notion of optimality and show that in general there does not exist an
optimal algorithm. Hence we shall consider candidate functions H of the form
H(cls) = (ρ, %) and define when we consider them to be acceptable. Henceforth,
we shall write cls ∈ F [rank] to express that cls is a closed constrained formula
that is stratified w.r.t. rank .

The first part of the development amounts to allowing % to be freely chosen
but to demand that ρ is constructed in an optimal manner from cls and % and
to show that this is always possible.

Definition 5. A function of the form H(cls) = (ρ, %) is a heuristics provided
that ρ is least such that ρ ⊇ % and (ρ, σ0) |= ignore(cls) whenever cls ∈ F [rank].

Proposition 3. If cls ∈ F [rank] and % is given, then there always exists a least
ρ such that ρ ⊇ % and (ρ, σ0) |= ignore(cls).

11

Proceedings of CPSec 2005

56 of 75

Proof. The proof amounts to showing that

ρ = u{ρ′ ∈ ∆ | (ρ′, σ0) |= ignore(cls) ∧ ρ′ ⊇ %}

always exists and fulfils the demands. Many strategies of proof can be used,
but for the purposes of this presentation we restrict ourselves to the case ∀R ∈
R : rank(R) > 0 where we can give a simple “syntactic” proof. Given cls =
cl1, · · · , clk we define the formula cls@% = cl′1, · · · , cl′k by setting

cl′i = cli ∧
∧

a∈%(R),rank(R)=i

R(a)

Clearly (ρ, σ0) |= ignore(cls)@% is equivalent to (ρ, σ0) |= ignore(cls) ∧ ρ ⊇ %
and hence the above formula for ρ amounts to ρ = S(ignore(cls)@%). 2

The second part of the development amounts to ensuring that % contains
all the “spurious elements” that need to be admitted in order to fulfil the con-
straints.

Definition 6. A heuristics in the sense of Definition 5 of the form H(cls) =
(ρ, %) is acceptable provided that (ρ, σ0) |= enforce(cls) whenever cls ∈ F [rank].

Fact 3. An acceptable heuristics exists.

Proof. Take H(cls) = (>,>). 2

To be able to choose between acceptable heuristics we shall define a partial
order for comparing them. We base it on the lexicographic order (rather than
the subset-order) in order to capture the intentions expressed towards the end
of Example 3.

Definition 7. A heuristics H1 is better than a heuristics H2, and equivalently
H2 is worse than H1, provided that for all cls ∈ F [rank]: if H1(cls) = (ρ1, %1)
and H2(cls) = (ρ2, %2) then %1 v %2.

We prefer this definition to the alternative where we instead compare the result-
ing solutions, as in ρ1 v ρ2, because of its focus on the “spurious elements” that
need to be added. Clearly the heuristics indicated in the proof of Fact 3 is worse
than all others.

It would be natural to try to find the best acceptable heuristics. Unfortu-
nately, this is not possible, i.e. we do not have the analogue of a Moore Family
result for acceptable heuristics.

Proposition 4. There exists no best acceptable heuristics.

Proof. It suffices to find a stratified constrained formula cls for which no accept-
able heuristics H can give a best result. For this consider the formula

1, ((¬R(a) ∧ ¬R(b)) ⇒ R!(a)) ∧ ((¬R(a) ∧ ¬R(b)) ⇒ R!(b))

where rank(R) = 1 and the universe is U = {a, b}. A heuristics H must produce
one of the following pairs (ρi, %i):

12

Proceedings of CPSec 2005

57 of 75

1. %1(R) = ∅ and ρ1(R) = ∅;
2. %2(R) = {a} and ρ2(R) = {a};
3. %3(R) = {b} and ρ3(R) = {b};
4. %4(R) = {a, b} and ρ4(R) = {a, b}.

Of these 2–4 are acceptable and 2–3 are acceptable and minimal. Since there are
two incompatible minimal choices no optimal choice of an acceptable heuristics
can exist. 2

A good acceptable heuristics. We now consider a class of parameterised
iterative heuristic algorithms H[choose, take]. Here choose is a function intended
to select an index from a set of indices, and take is a function intended to
select part of a partial solution; it will turn out that our preferred candidate has
choose = max and take = λ%.% (i.e. the identity).

The definition is given in Table 3. It accepts as input a closed, constrained
and stratified formula cls w.r.t. a ranking function rank (that without loss of
generality is assumed to use non-zero ranks only) and produces the pair (ρ, %). It
operates in an iterative manner, “backpropagating” any violations to constraints.
We use the function observe(· · ·R!(x) · · ·) = · · · ¬R(x) ⇒ RE(x) · · · of Table
2 and we write R◦

i for the set of ordinary predicates of rank i and similarly RE
j

for the set of error predicates corresponding to ordinary predicates of rank j and
finally we use · · · |R′ to denote the restriction to a set R′ of predicates.

We shall consider two algorithms: H[max , λ%.%] that selects the maximum
index for which a violation of the constraints have been observed and then selects
the entire error-component corresponding to this index; and H[min, λ%.%] that
selects the minimum index for which a violation of the constraints have been
observed and then selects the entire error-component corresponding to this index.

The correct operation of the algorithm is guaranteed by:

Proposition 5. H[choose, take] is an acceptable heuristics if ∀I : choose(I) ∈ I
and ∀ρ̃i : ρ̃i 6= ⊥ ⇒ take(ρ̃i) 6= ⊥.

Proof. The assumptions suffice for proving that H[choose, take] always termi-
nates because in each iteration of the loop the tuple ((%1, · · · , %i,⊥, · · · ,⊥), i)
will be strictly increasing w.r.t. the lexicographic order defined using v for
(%1, · · · , %i,⊥, · · · ,⊥) and ≤ for i. 2

Example 4. Returning to Example 3, H[max , λ%.%] suggests the remedial ac-
tion of upgrading ob1 to H by producing %(O) = {(ob1, H)}. This is preferable
to H[min, λ%.%] that suggests the remedial action of downgrading sub to L by
producing %(S) = {(sub, L)}. 2

While it is easy to find examples (like the one above) where H[max , λ%.%] is
indeed better than H[min, λ%.%], we cannot state this in general. For an example
of a formula where H[min, λ%.%] performs better than H[max , λ%.%] consider

R(a), S(a), T (a), (¬S(b) ∧ ¬T (b)) ⇒ (S!(b) ∧ T !(b)), T (b) ⇒ R!(b)

13

Proceedings of CPSec 2005

58 of 75

INPUT cls = cl1, · · · , clk and rank
s.t. cls ∈ F [rank]
s.t. rank uses non-zero ranks only

OUTPUT (ρ, %) = (ρ1 ∪ · · · ∪ ρk), (%1 ∪ · · · ∪ %k)

METHOD i := 1; %i := ⊥;
while i ≤ k do

ρ̃ := S(observe((cl1, · · · , cli)@(%1 ∪ · · · ∪ %i)));
b :=

∧
RE∈RE (ρ̃(RE) = ∅);

if b then ρ1 := (ρ̃ |R◦
1
); · · · ; ρi := (ρ̃ |R◦

i
); i := i + 1; %i := ⊥;

else i := choose{j | ∃RE ∈ RE
j : ρ̃(RE) 6= ∅}; %i := %i ∪ take(ρ̃ |RE

i
);

Table 3. The family of acceptable heuristics H[choose, take].

where rank(R) = 1, rank(S) = 2 and rank(T) = 3. Here H[min, λ%.%] produces
%(R) = ∅, %(S) = {b}, %(T) = ∅ and ρ(R) = {a}, ρ(S) = {a, b}, ρ(T) = {a},
whereas H[max , λ%.%] produces %(R) = {b}, %(S) = ∅, %(T) = {b} and ρ(R) =
{a, b}, ρ(S) = {a}, ρ(T) = {a, b}.

5 Conclusion

We have extended the flow logic approach to static analysis: instead of merely
specifying admissible solutions to analysis problems we additionally specify con-
straints to be enforced on the admissible solutions. Our use of a simple syntactic
distinction between assertions, R(x), and constraints, R!(x), have resulted in
very readable specifications, as was illustrated on a simple “typing example” for
the λ-calculus.

Our main contribution is the development of a heuristics that facilitates
loosening some of the constraints in order for a security policy to hold for se-
lected programs. The motivating example for this development has been the
Bell-LaPadula mandatory access control policy. Our strategy for loosening con-
straints has been to keep the logical formulae unchanged but to admit more
elements in the constraining predicates; we have generally referred to these as
“spurious elements”. We have studied and proposed heuristics for iteratively
recomputing least solutions to analysis problems in such a way that the final
solution adheres to the constraints posed. Also we have shown that a heuristics
is all that can be hoped for.

It is worth pointing out that this inherently iterative procedure can still
be formulated in a logical setting; this distinguishes our approach from that of
others (which to our knowledge remains unpublished). The general mechanism
facilitating our development has been to use the rank-information to express the
order of preference for adding the “spurious elements”. We believe there to be a
fair amount of flexibility in the choice of a ranking function rank for turning a
stratifiable clause into a formula that is stratified wrt. rank ; generally it should
be possible to assign low ranks to predicates recording simple observations from

14

Proceedings of CPSec 2005

59 of 75

the program whereas the predicates carrying the actual control flow information
may be so interdependent that they alle need to get the same rank.

Further work is needed for determining the extent to which this approach
is applicable to other security features; possibilities include restricting the be-
haviour of subjects inside the Trusted Computing Base and identifying the need
for enlarging the Trusted Computing Base.

Acknowledgements. This work has been supported by the Danish Natural Sci-
ence Research Council project LoST (21-02-0507). We should like to thank René
Rydhof Hansen for discussions and ideas, Hongyan Sun for working with us on
some preliminary ideas and the referees for their considerations and suggestions.

References

1. K. Apt, H. Blair, and A. Walker. A theory of declarative programming. In Foun-
dations of Deductive Databases and Logic Programming, pages 89–148. Morgan-
Kaufman, 1988.

2. D. Bell and L. LaPadula. Secure Computer Systems: Unified Exposition and Mul-
tics Interpretation. Technical Report ESDTR-75-306, MTR-2547, MITRE Corpo-
ration, 1975.

3. C. Bodei, M. Buchholtz, P. Degano, F. Nielson, H. Riis Nielson: Automatic Vali-
dation of Protocol Narration. In Proc. of the 16th Computer Security Foundations
Workshop (CSFW), pages 126-140, IEEE Computer Society Press, 2003.

4. A. Chandra, D. Harel: Computable queries for relational data bases. Journal of
Computer and System Sciences, 21(2):156–178, 1980.

5. P. Cousot, R. Cousot: Abstract Interpretation: A Unified Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoint. Proc. of 4th
ACM Symposium on Principles of Programming Languages (POPL), pages 238-
252, ACM Press, 1977.

6. D. Gollmann: Computer Security. Wiley, 1999.
7. Z. Manna, A. Shamir: The Optimal Approach to Recursive Programs. Communi-

cations of the ACM, pages 824–831. ACM Press, 1977.
8. R. Milner: A Theory of Typed Polymorphism in Programming. Journal of Com-

puter and System Sciences, Vol. 17, pages 348-275, 1978.
9. F. Nielson, H. Riis Nielson, C. Hankin: Principles of Program Analysis. Springer

Verlag, 2nd printing, 2005.
10. F. Nielson, H. Seidl, and H. Riis Nielson: A Succinct Solver for ALFP. Nordic

Journal of Computing, 9:335–372, 2002.
11. H. Riis Nielson, F. Nielson: Flow Logic: a multi-paradigmatic approach to static

analysis. The Essence of Computation: Complexity, Analysis, Transformation,
LNCS 2566, pages 223-244, Springer Verlag, 2002.

15

Proceedings of CPSec 2005

60 of 75

Using Constraints To Analyze And Generate
Safe Capability Patterns

Fred Spiessens, Yves Jaradin, and Peter Van Roy

Université catholique de Louvain
Louvain-la-Neuve, Belgium

{fsp,yjaradin,pvr}@info.ucl.ac.be

Abstract. We present a dual purpose CCP application for capability
based security. In a first setting, the application analyzes capability pat-
terns of collaboration by calculating upper bounds on the propagation
of (overt) causal influence. In this setting, all the relied upon restrictions
in the behavior of the subjects in the pattern are input and transformed
into constraint propagators.
In a second setting, the application calculates how the behavior of a (set
of) trusted subject(s) in the pattern should be restricted, given the global
safety properties that have to be respected.
From earlier theoretical results [SV05], we are confident that our ap-
proach is complete (all safety breaches are found and the proposed re-
strictions on behavior are sufficient). Because the tool is currently in a
very early stage of its implementation, we only present a small set of
preliminary quantitative results.

1 Introduction

In 1976 Harrisson, Ruzzo, and Ullman [HRU76] showed that the calculation of
safety properties in general is an intractable problem. As their modeling language
was Turing-complete, this intractability was the inevitable price to pay for its
expressive power. A few years later, Take-Grant systems [BS79] were proposed
for the analysis of capability based security problems [DH65]. In this model and
its extensions, the safety properties are tractable [LS77,FB96], but the formalism
lacks the power to express carefully restricted collaborative behavior. The need
for a more expressive model that takes such restrictions into account is explained
in [MS03,SV05].

The formal models presented in [SV05] provide the necessary expressive
power to precisely model restrictions in subject behavior relevant to the pro-
pagation of information and authority between (sets of) collaborating entities.
For finite configurations the calculation of the safety properties is tractable. The
propagation induced by newly created entities is safely approximated by accu-
mulating their behavior into the creating entity (parent). This result allows us
to safely model unknown (untrusted) entities without considering their possible
offspring. When modeling an entity’s behavior, only the behavior restrictions it
shares with all its potential children will be modeled as actual restrictions.

Proceedings of CPSec 2005

61 of 75

In the tool we present here, subject creation is restricted to this implicit
form. The development is currently in a prototype stage and has lots of other
limitations that will gradually be removed as the tool matures. Only the pro-
pagation of subjects is currently supported, and data propagation can only be
modeled by substituting the data with non-collaborative subjects.

Section 1.1 introduces the most important capability security concepts. Sec-
tion 2 gives a birds-eye overview of the tool. Design and implementation details
are discussed in Section 3. Section 4 shows an example of how the tool can be
used. The most important future extensions are listed in Section 5.

1.1 Glossary

Before explaining the goal and the approach of the tool, let us clarify the most
important terms that will be used in this paper:

Entity : A loaded instance of a programmed entity like a procedure, an object,
a process, a component or an agent. An entity can only be accessed (used)
via unforgeable references (capabilities) that combine the designation of the
entity with the authority to use the entity.

Subject : The modeled representation of an entity (possibly representing also
the set of entities created at runtime by the entity, as explained earlier).
Subjects could for instance be modeled from static analysis. Alternatively,
subjects can be specifications for entities yet to be programmed (e.g. model
based programming).

Subject behavior : The willingness of a subject to collaborate with another
subject in a certain way. A subject’s behavior should be a safe (over-) ap-
proximation of the behavior of the entity it models. If only the slightest
possibility of collaboration exists that can lead to the entity propagating in-
formation or authority, the corresponding subject should have this behavior.
There is more on subject behavior in section 2.2.

Potential Authority : The possible effects on propagation of authority and
information that could be exerted by an entity if the entity would be pro-
grammed to do so. A subject’s potential authority is a safe (over-)approximation
of the potential authority of the entity it models.

Actual Authority : The possible effects on propagation of authority and in-
formation that can be exerted by an entity, when we take into account what
is known about its actual behavior. A subject’s actual authority is a safe
(over-)approximation of the actual authority of the entity it models.

Capability rules of propagation: In pure capability systems, propagation
of authority and information is only possible via either:
1. collaboration : an entity (the invoker, indicated by the prefix i) can

initiate collaboration with another entity it has access to (the responder,
indicated by the prefix r). In such a collaboration, either of them (the
emitter) can provide data or subjects it has access to, to the other (the
collector) if the latter is willing to collaborate in that way. It is always
the emitter who decides what data or authority will be propagated, and
it is always the invoker who decides what entity to collaborate with.

Proceedings of CPSec 2005

62 of 75

2. parenthood : New entities can only be created by entities. An entity
that creates a new entity thereby gets the sole access to it.

3. endowment : The parent entity, upon creation of its child, endows the
child with a subset of its own access.

Capability systems and their rules for (overt) propagation of influence are
described in [MS03,SV05]).

Configuration : An access graph of subjects. A configuration can evolve via
collaboration between its subjects. Such collaboration is governed by the
capability rules of propagation and by the behavior of the subjects.

Capability Pattern : A useful configuration together with its well under-
stood and described safety properties (access that is prevented) and liveness
properties (access that is not prevented).

2 Overview of the Tool

2.1 The Goals

Figure 1 depicts the Caretaker pattern that will be a running example through-
out this paper. Caretaker, created and controlled by Alice, is a proxy for Carol,
to be used by Bob. Alice can order Caretaker to stop collaborating, in an at-
tempt to revoke the authority–to–invoke–Carol she has granted to Bob. The fact
that Bob and Dave are undefined subjects (modeling unknown entities and their
offspring) is indicated by a shadow.

For the pattern to really allow revocation, Bob should never get direct access
to Carol (indicated with the dashed arrow ending in a cross). Because the pattern
is to be useful in a non-trivial context, we want to also make sure that Bob will
not be prevented from getting access to Dave (indicated by the dashed arrow
from Bob tot Dave).

Fig. 1. The Caretaker Pattern for Revocation

In this paper, we use the term safety property to mean access that is effec-
tively prevented, while liveness property refers to access that is not prevented
by restrictions in the behavior of the subjects. The tool can be used for two
complementary goals:

Proceedings of CPSec 2005

63 of 75

1. Check Requirements : From the specifications for the behavior of the
trusted collaborating entities, the maximal propagation of access is calcu-
lated. The result will show directly whether or not the required safety and
liveness properties are satisfied. In the example, the behavior of Alice, Care-
taker and Carol (the trusted subjects) will be decisive.

2. Calculate Behavior Restrictions : Given a set of required safety- and
liveness properties, what minimal sets of behavior restrictions for a certain
subject can ensure the global properties? The subject(s) of which the beha-
vior restrictions are calculated will be called query-subject(s). For multiple
query subjects the minimally restrictive combinations of necessary restric-
tions in the behavior of the query subjects will be calculated.

In the example, the minimal sets of behavior restrictions for Carol can be
calculated if the behaviors of Alice and Caretaker are fixed. Alternatively one
could for instance calculate all possible combinations of Alice’s and Carol’s re-
strictions, given the proxy-behavior of Caretaker. The current version of the tool
is not ready to calculate combinations of three query subjects in a reasonable
amount of time. It is possible to give a minimum behavior to a query subject
though, which drastically speeds up the calculation of the remaining restrictions.

2.2 Monotonic and Confluent Approach

All access to subjects (and to data) that is present in an initial configuration
will be stored as simple boolean constraints in a constraint store. Every subject’s
initial knowledge about the configuration (its relations towards subjects and data
it has access to) will also be presented as boolean constraints.

Fig. 2. The propagation of access, knowledge and behavior

Proceedings of CPSec 2005

64 of 75

A set of subject-specific propagators corresponding to the subject’s inten-
tional behavior will test (ask) the subject’s current knowledge and generate new
behavior constraints in the constraint store (boolean constraints). We call these
constraints the subject’s extensional behavior. Another set of propagators will
model how access can propagate via collaboration in the configuration – gen-
erating new access constraints – and will also make sure that the collaborating
subjects are informed of the observable effects of the collaboration, generating
extra knowledge constraints.

The working of these propagators, from the point of view of a single sub-
ject, are graphically depicted in Figure 2. The system-wide propagators and
constraints are gray. The constraint store will eventually reach a fix point, rep-
resenting the maximum possible propagation of access in the configuration, from
which goal 1. can be inferred. If goal 2. is pursued, a distribute-and-search pro-
cess will search for (one or all) satisfactory solution(s) to the query-subject’s
extensional behavior.

The access constraints have the form access(S1, X) meaning that subject
S1 has access to X (X being another subject or data). The extensional beha-
vior constraints of a subject S1 have the following form (S1 is an implicit first
argument that will be made explicit when used by the access propagators) :

predicate meaning
iEmit(S2, X) Subject S1 is willing to invoke subject S2,

and pass X as a parameter to it.
iCollect(S2) Subject S1 is willing to invoke subject S2,

and accept whatever S2 provides as a return value
rEmit(X) Subject S1 is willing to return subject X

upon being invoked.
rCollect() Subject S1 is willing to accept whatever input

argument S1 is being invoked with.
rExchange(X, Y) Subject S1 is willing to accept whatever input

argument S1 is being invoked with,
and if it is X, then it is willing to return Y .

Notice that rExchange() allows S1 to differentiate its behavior towards its in-
vokers, based on a proof-of-access that these invokers can provide to S1.

The knowledge constraints generated by the access propagators toward sub-
ject S1 have the following form (S1 is now an explicit first argument that will
be made implicit when used by subject S1’s behavior propagators) :

Proceedings of CPSec 2005

65 of 75

predicate meaning
iEmitted(S1, S2, X) Subject S1 has successfully invoked S1,

and passed X as a parameter to it.
iCollected(S1, S2, Y) Subject S1 has successfully invoked subject S2, and

accepted Y as a return value from the invocation.
This means S1 has now got access to Y

rEmitted(S1, X) Subject S1 has successfully returned subject X
upon being invoked.

rCollected(S1, Y) Subject S1 has accepted input argument Y upon
being invoked. S1 has now got access to Y.

rExchanged(S1, X, Y) Subject S1 has returned Y on the basis of
having received X in the same invocation.

access(S1, X) Subject S1 has access to X, either acquired by
collecting or from initial conditions.

The other knowledge constraints are subject-specific, and only the subject’s
intentional behavior propagators will be able to read/write to them. They will
have the subject itself as an implicit first argument.

2.3 Input

The tool takes an initial configuration as input, consisting of an access graph of
named subjects of which the intentional behavior is described. The intentional
behavior of every subject is given as a set of logical implications (Horn clauses).
The condition (body) of such an implication will contain knowledge-predicates,
the conclusion (head) can contain subject-specific knowledge predicates and ex-
tensional behavior predicates.

For example, the proxy behavior that will characterize Caretaker in the Care-
taker pattern could be specified using a subject-specific knowledge predicate
isMyProxy() in the following rules:

iEmit(S, X) :- isMyProxy(S) ∧ rCollected(X)
iCollect(S) :- isMyProxy(S)
rEmit(X) :- iCollected(S, X)
rCollect()

Subjects are further initialized with a set of facts, that represent their initial
partial knowledge (predicates) of the configuration. A subject’s initial knowledge
predicates will typically represent part of its relations towards the subjects (or
data) it initially has access to. The access graph is also described as a set of
(access) facts.

A set of safety properties and liveness properties are added to the configu-
ration in the form of logical combinations of basic constraints (typically access
constraints). The safety properties will be negated before being converted into a
propagator that will cause failure upon possible violation of the property. Before
a solution is validated, the liveness properties will also be verified.

If the goal is to calculate extensional behavior, the list of query subjects
should be provided too.

Proceedings of CPSec 2005

66 of 75

2.4 Output

The tool calculates from the initial configuration, the maximal configuration
containing all possible access. When a failure is detected, it is straightforward to
construct witness traces (evidence) of how the safety properties can be violated,
from the constraints that were added to the store. Upon success, the store shows
the maximal extent to which data and capabilities (subjects) can be propagated.
It is then simple to check the liveness requirements.

If the extensional behavior of a query subject is calculated (via search), the
tool extracts for every solution, from the quiescent store corresponding to that
solution, an overview of its extensional behavior predicates that are true (ef-
fectively leading to allowed collaboration), false (collaboration could lead to a
violated safety property), or undefined (not relevant in the configuration).

3 CCP Based Implementation

In this section we describe how the constraint propagators are designed. Apart
from the propagators for intentional subject behavior and access propagation,
we present some additional propagators that will assist the calculation. We also
describe our strategy for search and distribution.

3.1 Constraint Propagators

Propagators for Access These propagators are independent of the actual
configuration and the specified behavior of the subjects. They are a direct rep-
resentation of the way how, in capability systems, information and access are
propagated via collaboration.

1. Granting: the invoker emits, the responder collects.

access(S1, S2) ∧ access(S1, X) ∧ iEmit(S1, S2, X),∧rCollect(S2)
access(S2, X) ∧ iEmitted(S1, S2, X) ∧ rCollected(S2, X)

(1)

2. Take rule: the invoker collects, the responder emits

access(S1, S2) ∧ access(S2, X) ∧ iCollect(S1, S2),∧rEmit(S2, X)
access(S1, X) ∧ iCollected(S1, S2, X) ∧ rEmitted(S2, X)

(2)

3. Exchange rule: both invoker and responder emit and collect. The responder
bases his decision to emit on (obtainable knowledge about) what he collected
during the invocation.

access(S1, S2) ∧ access(S1, X) ∧ access(S2, Y) ∧ iEmit(S1, S2, X)
∧rCollect(S2) ∧ iCollect(S1, S2) ∧ rExchange(S2, X, Y)

access(S2, X) ∧ access(S1, Y) ∧ iEmitted(S1, S2, X) ∧ rCollected(S2, X)
∧iCollected(S1, S2, Y) ∧ rExchanged(S2, X, Y)

(3)

Proceedings of CPSec 2005

67 of 75

Using the propagators (1) and (2) we can reduce (3) to:

iEmitted(S1, S2, X) ∧ access(S2, Y) ∧ iCollect(S1, S2)
∧rExchange(S2, X, Y)

access(S1, Y) ∧ iCollected(S1, S2, Y) ∧ rExchanged(S2, X, Y)
(4)

Behavior Propagators These represent the subject-specific reaction to posi-
tive knowledge about access to subjects and data, and about the way this access
was acquired. They can refine knowledge and use knowledge to generate beha-
vior. They are restricted in the sense that they cannot generate new access (that
would defy the capability rules) or knowledge of the kind that is produced by
the access propagators. To reflect the fact that subjects can only refine their
own knowledge, and generate their own behavior, these propagators will also be
restricted in scope. The first argument of every predicate is implicit and desig-
nates the subject who’s behavior is being described. It will become explicit only
for the access-propagators and for the assisting propagators.

A Horn clause that partially describes subject S1’s behavior like this:

behavior(B1, . . . Bn)← condition1(C1,1 . . . C1,k)∧. . .∧conditionj(Cj,1, . . . Cj,m)
(5)

. . . will be converted into a propagator like this:

condition1(S1, C1,1, . . . C1,k) ∧ . . . ∧ conditionj(S1, Cj,1, . . . Cj,i)
behavior(S1, B1, . . . Bn)

(6)

The behavior for an unknown (untrusted) subject S1 can be represented with
a single propagator:

true

iCollect(S1, S2) ∧ iEmit(S1, S2, X) ∧ rCollect(S1) ∧ rEmit(S1, X)
(7)

Assisting Propagators As soon as one of two ”unknown” (completely colla-
borative) subjects has direct access to the other one, they will inevitably end up
sharing the same access. Therefore, the query subject should not even consider
treating these subjects differently, as it will not have a different effect. For every
pair of unknown subjects, (S1, S2), and for every query subject Sq, we will add
the following propagators:

access(S1, S2) ∨ access(S2, S1)
iEmit(Sq, S1, X) = iEmit(Sq, S2, X)

(8)

access(S1, S2) ∨ access(S2, S1)
iEmit(Sq, S, S1) = iEmit(Sq, S, S2)

(9)

access(S1, S2) ∨ access(S2, S1)
iCollect(Sq, S1) = iCollect(Sq, S2)

(10)

Proceedings of CPSec 2005

68 of 75

access(S1, S2) ∨ access(S2, S1)
rEmit(Sq, S1) = rEmit(Sq, S2)

(11)

access(S1, S2) ∨ access(S2, S1)
rExchange(Sq, S1, X) = rExchange(Sq, S2, X)

(12)

access(S1, S2) ∨ access(S2, S1)
rExchange(Sq, X, S1) = rExchange(Sq, X, S2)

(13)

Without going into details about the implementation, it is easy to see how
these propagators can be efficiently implemented: as far as the query subjects are
concerned, their extensional behavior can consider both subjects as one aggregate
subject. This principle can also be used in a weaker form for any two subjects,
when it would be useless for the query subjects to differentiate (a particular part
of) their behavior towards the one or the other. It is a form of symmetry braking
in the constraint model.

Safety properties are mere boolean constraints that are set to false, to cause
failure when they are unified with true by a propagator. We are experimenting
with propagators for safety properties in the form (14) and (15), to promote early
failure detection. Propagating false to a query subject’s extensional behavior
constraints will decrease the depth of the search tree.

¬access(Sq, X)
¬(access(S1, Sq) ∧ access(S1, X) ∧ iEmit(S1, S2, X) ∧ rCollect(S2)

(14)

¬access(Sq, X)
¬(access(Sq, S1) ∧ access(S1, X) ∧ rEmit(S1, X) ∧ iCollect(S1, S2)

(15)

3.2 Constraint Implementations

We implement the tool in the Mozart environment [Moz03] for the multi-paradigm
language Oz [Smo95,VH04], which provides strong support for concurrent con-
straint programming [Sch02]. Because the implementation of the basic boolean
constraints can have a big impact on the efficiency of the propagators mentioned
above, we are currently experimenting with two approaches in parallel, one using
finite domain integers and the other one using finite sets of integers. We give a
short description of both.

Finite Domain Integer Constraints Every predicate is modeled as a finite
domain integer variable in a domain ranging from 0 (false) to 1 (true). Logical
connectives can now be implemented as a product (logical and) or as a sum (log-
ical or, using the appropriate domain for the sum). Propagator (16) shows how
we implement the safety property propagator (14) with finite domain integers
and the sum and <: (strictly smaller) propagators.

¬access(Sq, X)
sum([access(S1, Sq), access(S1, X), iEmit(S1, S2, X), rCollect(S2)]) <: 4

(16)

Proceedings of CPSec 2005

69 of 75

To avoid a combinatorial explosion of the number of finite domain variables,
we implement logical and with nested implications impl where appropriate. The
implication propagator will wait for its condition to be true, before telling its
conclusion. The conclusion can again be an implication. This is how we imple-
ment the access propagators in this approach. Propagator (17) gives an example
of how the granting propagator (1) is implemented.

impl(access(S1, S2),
impl(access(S1, X),

impl(iEmit(S1, S2, X),
impl(rCollect(S2),

(access(S2, X) ∧iEmitted(S1, S2, X)
∧rCollected(S2, X))))))

(17)

Finite Sets Constraints In this approach we present an n-ary predicate as the
finite set of all n-tuples of subjects that satisfy the predicate. We assign a unique
integer to each n-tuple of subjects, to represent that tuple in the set. Implications
over predicates are translated into set inclusions over the corresponding finite
sets of integers, disjunction is translated to union, and conjunction becomes
intersection. Of course, these operations should only be performed on compatible
predicates.

In (18) and (19) we consider two clauses in Caretaker’s behavior to explain
how the predicates are made compatible.

iEmit(S, X) : − isMyProxy(S) ∧ rCollected(X) (18)

rEmit(X) : − iCollected(S, X) (19)

In the body of clause (18) we cannot simply use set intersection, because
isMyProxy(S) and rCollected(X) have a different variable. First we have to
make the cartesian product in the following way:
iEmit(S, X) :- (isMyProxy(S)× isSubj(X)) ∧ (isSubj(S)× rCollected(X))
We use isSubj() as a unary predicate that is true for every subject. The clause
now translates to the finite set propagator:
iEmit ⊆ (isMyProxy × isSubj) ∩ (isSubj × rCollected).
The cartesian product of finite sets is implemented by recalculating the indivi-
dual integers (tuples) of the result set.

The head of clause (19) has one less variable than its body. Therefore we use
a projection operation P(...) that extracts a sub-tuple from every tuple in the
predicate, and we convert the clause to: rEmit(X) :- P(X)(iCollected(S, X)).
This translates to the finite set propagator: rEmit ⊆ P(2)(iCollected).

All clauses can thus be translated to finite set propagators using the proper
combination of cartesian product, projection, inclusion, union, and intersection.
Because the cartesian product is the most costly operation, we try to minimize
its use and the size of its argument sets. For instance, the actual implementation
of the clause (19) will be simplified to: iEmit ⊆ isMyProxy × rCollected.

Proceedings of CPSec 2005

70 of 75

Preliminary Comparison The current state of the tool does not yet allow us
to make quantified comparisons or draw conclusions about which of the two ap-
proaches is best suited for what kind of problems. We provide for both approahes
the preliminary benchmark results for the calculation of Carol’s restriction in
the caretaker pattern as described in Section 4. We currently believe that the
optimal overall approach will be a merge of both.

The finite domain integers approach finds the 4 solutions in 5 seconds, using
318 search nodes (not failed neither succeeded nodes), with a search tree depth
of 35.

The finite set approach finds the first three solutions after 1, 20, and 63
seconds (total time) respectively. The forth solution was not yet found after 30
minutes. The finite set approach finds the first tree solutions using 440, 6000,
and >12400 search nodes with a maximal search tree depth of 37.

All calculations were done on a 1.25 GHz PowerPC G4 with 1 GB memory.

3.3 Search and Distribution Strategies

When testing suitable behavior for query subjects, we use a depth first search
strategy. To detect failures as fast as possible, we order the extensional beha-
vior constraints of the query subject(s) by the number of concurrent constraint
propagators that are currently waiting for that basic constraint to become deter-
mined. This functionality is implemented in the FD.reflect.nbSusps built-in
procedure. The distribution stops when no more behavior aspects have at least
one propagator waiting for it, indicating that all feasible ways for propagating
access have been exhausted.

To detect the maximal solutions first, we always try the 1-alternative (true)
first (indicating willingness to collaborate).

Further symmetry breaking is done via a particular use of the branch-and-
bound facilities provided by the environment (with our thanks to Raphaël Collet
for pointing out this possibility). Whenever we find a solution, we add it to a
list of currently found solutions, and then tell a constraint that the next solu-
tion should not be a sub-solution of any solution in the list. Sub-solutions are
solutions with less-than-maximal relevant collaboration properties. The branch-
and-bound constraint works like this:

proc{NoSubSolutions Recent Next}
Recent.oldSols := (Recent.solution)|@(Recent.oldSols)
{ForAll @(Recent.oldSols)
proc{$ Traces#_}

{FD.sum {Map {Filter Traces fun{$ Tr} Tr.value==0 end}
fun{$ Tr} {GetPred Tr.subjId Tr.pred Next} end}

´>:´ 0}
end}

end

The procedure NoSubSolutions adds a propagator that ensures that there
will be at least one non-collaborative (= 0) relevant behavior predicate of every
previous solution that will be collaborative (= 1) in the next solution. Together

Proceedings of CPSec 2005

71 of 75

with the choice strategy “try the 1-alternative first”, this ensures that no sub-
solutions are found or searched for.

4 Example

As an example we calculate Carol’s necessary behavior restrictions in the ”care-
taker” pattern, introduced in Figure 1 of Section 2.

Since we don’t know the behavior of Bob and Denis, the only safe approxi-
mation is to consider them to be completely collaborative (unknown) subjects.
The intentional behavior of Alice and Caretaker is listed in table 1, together
with their initial access and knowledge.

Table 1. The behavior of Alice and Caretaker

Alice

iEmit(S, X) :- use(S) ∧ pass(X) knowledge → behavior
iEmit(S, X) :- isBob(S) ∧ isCaretaker(X)
iCollect(S) :- use(S) ∧ pass(S)
rEmit(X) :- pass(X)
rCollect() :- true

pass(X) :- rCollected(X) knowledge → knowledge
use(X) :- isCarol(X)

access(1) ∧ isSelf(1) ∧ use(1) ∧ pass(1) initial knowledge
access(2) ∧ isBob(2)
access(3) ∧ isCaretaker(3)
access(4) ∧ isCarol(4)

Caretaker

iEmit(S, X) :- isMyProxy(S) ∧ rCollected(X) knowledge → behavior
iCollect(S) :- isMyProxy(S)
rEmit(X) :- iCollected(S, X)
rCollect()

access(3) ∧ isSelf(3) initial knowledge
access(4) ∧ isMyProxy(4)

Table 2 lists the solutions found for Carol’s extensional behavior.
The first two solutions restrict Carol’s behavior towards Alice, because Alice

could inadvertently allow Carol to be collected from here by Bob. The precau-
tions taken in Alice’s behavior do not exclude this: the sixth clause in Alice’s
behavior shows that when she collects Carol upon being invoked, she will pass
her on.

The last two solutions are not very interesting, since they don’t allow Carol
to accept any capabilities upon being invoked. An inspection of the store showed
us that in these two cases, Alice (rather than Carol) is responsible for providing
Bob access to Denis (the liveness property).

Proceedings of CPSec 2005

72 of 75

Table 2. solutions

1 Carol should not rEmit herself.
Carol should not iEmit herself to Alice, Bob, or Denis.

2 Carol should not rEmit herself or Alice
Carol should not iEmit herself to Bob or Denis,
Carol should not iEmit Alice to Bob or Denis.

3 Carol should not rEmit herself
Carol should not iEmit herself to Denis,
Carol should not iCollect from Denis.
Carol should not rCollect.

4 Carol should not rEmit herself
Carol should not iEmit herself to Bob or Denis
Carol should not rCollect.

The exchange() predicate was not used in the example, because we did not
yet have a stable and reliable implementation for it.

5 Future Extensions

Expressive Power

Adding data : We will soon add support for data. The current solution uses
non-cooperative subjects as data and does not allow to reason about the more
unexpected and indirect ways in which information can flow. For instance,
when a client can influence the behavior of a server, and that behavior is
visible to another client, information can flow from one client to the other.
Our theoretical model allows to reason about this kind of data flow, and so
should our tool.

Exchange : rExchange() is a recent addition of which we have to explore
the possibilities and limitations. We would like to use it for enabling the
Caretaker proxy to decide its collaboration per invocation, but invocation-
based granularity can easily lead to a combinatorial explosion.

Derived safety properties : It is better to reason about the flow of autho-
rity than only about the effects of authority propagation. This can be done in
flow-graphs (with arcs representing the direction of the flow) that are derived
from the configuration. We will use reachability constraints [QVD05] in de-
rived flow graphs to express more elaborated safety properties. We will then
be able to express the more precise safety property for the caretaker pattern:
”Carol’s authority should be reachable for Bob only via the caretaker”.

Functionality

Calculate intentional behavior : To provide a real specification for the query
subject’s intentional behavior we have to derive such specifications from the
extensional behavior of the query subjects.

Proceedings of CPSec 2005

73 of 75

Real pattern generation : We want to experiment with adding trusted sub-
jects to a configuration in critical places, when no safe solutions can be
found in a pattern. This would allow us to generate patterns from high-level
specifications.

Performance and Scalability

Add pruning : The propagators for the safety-properties should help pruning
the search space more than they do now.

Merging the two approaches : The approach based on finite sets has not
yet been optimized to the level of the finite integer domain approach. We
need to take care of that, and then measure the performance for different
kinds of problems to find out which of the two approaches in Section 3.2 is
the most performing and scalable, and how we can merge them to get the
best of both worlds.

User Interface

Write a parser : Currently we input the problems directly in parsed form.
Web interface : The tool would be useful to the community of capability

developers. Therefore we want to wrap it into a web application.
Integrating GraphViz : We have an ad-hoc connection to the GraphViz tool

[GN00,KN93] for visualizing the graphs generated by the solutions. We will
properly integrate this visualization tool.

6 Related Work

Whereas actual applications of CCP to security are not widespread yet, we see
a few interesting opportunities that are related to model checking and pattern
generation as we describe it in our paper.

The work of Joshua Guttman et al. [Jos05] uses a datalog-like language for
secure protocol design . We believe that that by using constraints (and search)
the way we do, that approach could be enriched to also support the “generation”
of such protocols, from general descriptive rules.

Jan Jürjen’s work on security specifications in UML [J0̈5] – again a model-
based approach – could probably also benefit from extensions with constraint-
based model checking.

7 Acknowledgments

This work was partially funded by the EVERGROW project in the sixth Frame-
work Programme of the European Union under contract number 001935, and
partly by the MILOS project of the Walloon Region of Belgium under conven-
tion 114856. We thank Raphaël Collet for discussing the formal aspects of the
model. We thank Mark Miller for his advice about capability-based security. We
thank the reviewers for their useful comments and suggestions.

Proceedings of CPSec 2005

74 of 75

References

[BS79] Matt Bishop and Lawrence Snyder. The transfer of information and authority
in a protection system. In Proceedings of the seventh ACM symposium on
Operating systems principles, pages 45–54. ACM Press, 1979.

[DH65] J. B. Dennis and E. C. Van Horn. Programming semantics for multipro-
grammed computations. Technical Report MIT/LCS/TR-23, M.I.T. Labora-
tory for Computer Science, 1965.

[FB96] Jeremy Frank and Matt Bishop. Extending the take-grant protection system,
December 1996. Available at:
http://citeseer.ist.psu.edu/frank96extending.html.

[GN00] Emden R. Gansner and Stephen C. North. An open graph visualization system
and its applications to software engineering. Softw. Pract. Exper., 30(11):1203–
1233, 2000.

[HRU76] Michael A. Harrison, Walter L. Ruzzo, and Jeffrey D. Ullman. Protection in
operating systems. Commun. ACM, 19(8):461–471, 1976.

[J0̈5] Jan Jürjens. Secure Systems Development with UML. Springer, Berlin, June
2005.

[JM04] Michael Jünger and Petra Mutzel. Graph Drawing Software. Mathematics and
Visualization. Springer, Dec 2004.

[Jos05] Joshua D. Guttman and Jonathan C. Herzog and John D. Ramsdell and
Brian T. Sniffen. Programming cryptographic protocols. Technical report,
The MITRE Corporation, 2005. Availalbe at
http://www.ccs.neu.edu/home/guttman/.

[KN93] Eleftherios Koutsofios and Stephen C. North. Drawing graphs with dot. Murray
Hill, NJ, 1993.

[LS77] R. J. Lipton and L. Snyder. A linear time algorithm for deciding subject
security. J. ACM, 24(3):455–464, 1977.

[Moz03] Mozart Consortium. The Mozart Programming System, version 1.3.0, 2003.
Available at http://www.mozart-oz.org/.

[MS03] Mark S. Miller and Jonathan Shapiro. Paradigm regained: Abstraction
mechanisms for access control. In 8th Asian Computing Science Conference
(ASIAN03), pages 224–242, December 2003.

[QVD05] Luis Quesada, Peter Van Roy, and Yves Deville. The reachability propagator.
Research Report INFO-2005-07, Université catholique de Louvain, Louvain-la-
Neuve, Belgium, 2005.

[Sch02] Christian Schulte. Programming Constraint Services: High-Level Programming
of Standard and New Constraint Services, volume 2302 of Lecture Notes in
Artificial Intelligence. Springer-Verlag, 2002.

[Smo95] Gert Smolka. The Oz programming model. In Computer Science Today,
volume 1000 of Lecture Notes in Computer Science, pages 324–343. Springer-
Verlag, Berlin, 1995.

[SV05] Fred Spiessens and Peter Van Roy. A practical formal model for safety ana-
lysis in Capability-Based systems, 2005. To be published in Lecture Notes in
Computer Science (Springer-Verlag). Available at
http://www.info.ucl.ac.be/people/fsp/tgc/tgc05fs.pdf. Presentation at
http://www.info.ucl.ac.be/people/fsp/auredsysfinal.mov.

[VH04] Peter Van Roy and Seif Haridi. Concepts, Techniques, and Models of Computer
Programming. MIT Press, March 2004.

Proceedings of CPSec 2005

75 of 75

