Computational Issues in Secure Interoperation
Li Gong and Xiaolei Qian

Abstract— Advances in distributed systems and network-
ing technology have made interoperation not only feasible
but also increasingly popular. We define the interoperation
of secure systems and its security, and prove complexity
and composability results on obtaining optimal and secure
interoperation. Most problems are NP-complete even for
systems with very simple access control structures, while
for a general setting the problem is undecidable. Neverthe-
less, composability reduces complexity in that secure global
interoperation can be obtained incrementally by composing
secure local interoperation. We illustrate, through an ap-
plication in secure database interoperation, how these the-
oretical results can help system designers in practice.

Keywords— Computer security, database systems, interop-
erability, secure composability, algorithms, computational
complexity.

I. INTRODUCTION

Recent advances in distributed systems and network-
ing technology have made interoperation not only feasible
but also increasingly popular. For example, heterogeneous
databases can be linked by high-speed networks that con-
sist of heterogeneous networks connected by gateways. In
such an application environment, heterogeneity (such as in
data semantics, data representation, and communication
protocols) among system components must be reconciled
properly. Some research efforts are under way to deal with
these problems [1].

One attribute of interoperation that needs reconciliation
but has not been closely studied is security with regard
to access control. Consider an application involving multi-
ple systems dealing with commerce (e.g., national credit
databases), finance (e.g., stock market information sys-
tems), medicine (e.g., patient records), and defense, each
having a distinct access control structure. To facilitate in-
formation exchange among such systems, some mapping
between the heterogeneous security attributes must be in-
troduced, for example, by the system administrators. Cur-
rent practices show that these mappings, even if chosen
carefully, can result in security breaches that previously
did not exist in any individual system (e.g., [2], [3]).

Secure interoperation is a serious concern for military
systems! as well as commercial ones. For example, consider
the information system of a major research organization
where Alice, being a project supervisor, is allowed access

A preliminary version of this paper was presented at the IEEE
Symposium on Research in Security and Privacy, Oakland, California,
May 1994.

The authors are with SRI International, Computer Science Labora-
tory, 333 Ravenswood Avenue, Menlo Park, California 94025 U.S.A.
Email addresses are {gong,qian}@csl.sri.com.

1The (U.S.) Defense Information Systems Agency’s Defense Infor-
mation System Network Technology Requirements Document (version
0, August 3, 1993) estimated that the U.S. DoD enterprise has more
than 10,000 networks worldwide, most of which are not interoperable
with each other and do not adequately support information sharing.

to Bob’s files, but not vice versa. Suppose that this organi-
zation has just become a subsidiary of a corporation where
Charles is Vice President for Research and Diana, being his
secretary, has access to his files. After the merger, it seems
natural to permit Charles to access Alice’s project papers.
But if Bob should be allowed access to Diana’s file cabinet,
there would be a security violation because now Bob would
potentially have access (indirectly via Diana and Charles)
to Alice’s files to which he should be denied access.
Although the security violation in this example may not
be too difficult to spot and remove, a real-world system
could have hundreds or thousands of entries in its access
control list so that choosing a secure yet satisfactory (e.g.,
with maximum data sharing) mapping between many such
access control lists is a daunting task. In other words, in-
teroperation of systems with heterogeneous access control
structures poses the following new challenges: what is the
definition of secure interoperation? How can security vio-
lations be detected? And how can these violations be re-
moved while a maximum amount of information exchange
is still facilitated? This paper attempts to answer some of
these questions. First we turn to what we think are the
fundamental requirements in secure interoperation.

II. PRINCIPLES OF SECURE INTEROPERATION

One essential feature in federated systems is the auton-
omy of an individual system — that is, each system may be
administrated independently [4], [1]. To preserve this fea-
ture in secure interoperation, autonomy in security should
be guaranteed.

Principle of Autonomy. Any access permitted
within an individual system must also be permit-
ted under secure interoperation.

On the other hand, interoperation should not violate the
security of an individual system.

Principle of Security. Any access not permit-
ted within an individual system must also be de-
nied under secure interoperation.

Any other new access introduced by interoperation
should be permitted unless explicitly denied by the specifi-
cation of secure interoperation. Note that, unless stated
otherwise, by access we mean direct or indirect access.
Moreover, we assume that access rules in one system do
not conflict with rules in another system. In practice, this
assumption is generally satisfied by the fact that the set
of one system’s entities (e.g., users and files) is typically
disjoint from that of another system. Extensions to our
approach can handle situations when this assumption does
not hold.

It is conceivable that under some circumstances a system
may be willing to sacrifice some of its autonomy.

III. GENERAL UNDECIDABILITY

In our discussion, the security attributes of a system are
expressed with an access control list (ACL) [5]. We view a
system as a collection of users, machines, data objects, and
others, each being a distinct unit with regard to security.

The task we are facing is the following: given a set of ac-
cess control lists, define what secure interoperation is and
investigate the complexity of detecting security violations
in the global system and that of removing security viola-
tions while maintaining a reasonable level of interoperation.

It has been previously shown that the security (or safety,
as it is sometimes called in the literature) of any given set
of access rights and commands is in general undecidable [6],
and some variations of the decision problem are at best NP-
complete [7]. Here, we also prove that the general secure
interoperation problem is undecidable.

Informally, the security aspect of an interoperation is
represented by access rights across systems. That is, given
access control lists for individual systems, an interoperation
F is a set of access control entries where, for each entry,
the subject and the object belong to different systems. To
satisfy the principle of security, the general problem is to
decide if any access that is not permitted in one system is
permitted as a result of interoperation.

We formulate our problem following the general defi-
nitions by Harrison, Ruzzo, and Ullman [6, Theorem 2,
p.469]. A system in the general HRU model consists of a
set of access rights and a set of commands. For brevity,
we do not repeat the details here, except by noting that
the set of access rights — subjects’ actions on objects — in-
clude create, delete, enter right, remove right, and
others. Therefore, informally, an interoperation consists of
two individual systems and an additional set of commands
that refer to symbols (subjects, objects, and access rights)
in both systems.

Problem 1: (General Secure Interoperation) Given
the access control lists and commands of two systems G
and G5, an interoperation F', and an access right r in G.
Is there a command sequence that will add r to an entry in
(1, where r previously does not exist and cannot be added
by commands in G; alone?

Theorem 1: General secure interoperation is undecid-
able.

Proof: Given a safety problem, as defined by Har-
rison, Ruzzo, and Ullman, of the form: “Can access right
r appear in entry (z,7)?” we can permute the lines and
columns of the access control matrix so that entry (i, j)
resides at the upper-left corner of the matrix.

We also draw a horizontal line and a vertical one to divide
the access matrix into four sections, where the upper left
section containing the single entry of (7, j) represents Gy,
the lower right section represents Gy, and the other two
sections represent the interoperation F' (see Figure 1 where
FLUF=F).

We then accordingly reassign the commands in the orig-
inal system as follows. Those commands that do not refer
to symbols in G; are assigned to belong to system G2. All
other commands belong to F. Note that, if there is such a

G1 F2

F1 G2

Fig. 1. Proof of General Undecidability

command that refers to only symbols in G, we can easily
rewrite them so they now refer to symbols in both G; and

G and yet their functionalities remain unchanged.
Clearly r does not exist in 1, and cannot be added by
commands in G alone because there is no command in G
at all. Now, if the general secure interoperation problem
is decidable, then we can decide whether r can be entered
into G1. Thus we can decide if 7 can be entered in entry
(z,7) in the safety problem. In other words, the general
safety problem is also decidable, which is a contradiction.
|

IV. SYSTEM MODEL AND TERMINOLOGY

Given Theorem 1, we expect at best to obtain NP-
completeness results for secure interoperation of systems
with more restricted access control structures. We thus
follow the usual proof method for NP-completeness to in-
vestigate only a restricted problem where in each ACL: (1)
each subject owns exactly one file, with read and write
access; (2) a subject can have only read access to a file
owned by someone else; (3) if a subject can read another’s
file, the latter cannot read the former’s file; (4) an ACL is
static, and in particular, read and write are the only types
of access specified.

Our NP-completeness results should imply similar NP-
completeness results for formations of the problem using
more general access control lists. In addition, given the
particular restrictions on ACL, our results should also im-
ply NP-completeness results for the interoperation of Bell-
LaPadula type multilevel secure systems [8], [9], although
our study is not specially aimed at multilevel security ei-
ther in the sense of Bell-LaPadula or that of noninterfer-
ence (e.g., [10]).

In our discussion, we use the following terminology, no-
tations, and definitions. Because one subject owns exactly
one file, there is no need to distinguish between a subject
and its file. For example, instead of saying that Alice has
access to Bob’s file, we can simply say that Alice has ac-
cess to Bob. We refer to this combination of a subject and
its file an entity. Moreover, it is obvious that one entity
has access to oneself (i.e., one’s own file), and if Alice can
access Bob, and Bob can access Charles, then Alice can ac-
cess Charles indirectly. Recall that one restriction on the

ACL is that if Alice can access Bob then Bob cannot ac-
cess Alice, we arrive at the following definition of a secure
system as specified with a restricted ACL.

Definition 1: (Secure System) A secure system is an
ACL in the form of G = (V, A) where V is a set of entities
and A is a binary relation “access” on V that is reflexive,
transitive, and antisymmetric.

Graphically, we can view a system as an acyclic directed
graph. V is the set of vertices and A is the set of arcs
— there is an arc leading from vertex u to v, denoted by
(u,v), if and only if A contains the binary relation “u ac-
cess v”. The direction of the arc is then the direction of the
permitted access. Thus, for the merger example, we have
Research = <{Alice, Bob, Eve}, {(Alice, Bob),
(Eve, Alice)}>, and Corporation =<{Charles, Diana,
Fred}, {(Charles, Fred), (Diana, Charles)}>. The
graphical representation of both systems is in Figure 2,
where each person is represented by his or her initial.

Fig. 2. Two Separate Systems

For convenience, we sometimes do not distinguish be-
tween an ACL and its graphical representation if no con-
fusion can arise.

We say that an access (u,v) is legal in G (or in A) if
and only if there is a directed path in (the graphical repre-
sentation of) G leading from u to v. We denote this with
(u,v) x G.

Suppose we have n secure systems, G; = (V;, 4;), i =
1,2,...,n, and for simplicity, we assume that all entities
are distinctly named — that is, V; N V; = 0,7 # j. (Here 0
denotes the empty set.) To facilitate interoperation, map-
pings between entities of different systems must be intro-
duced to reflect the desired data sharing through interop-
eration. Such mappings can be represented by a set of
cross-system access relations F', which is chosen possibly
by an administrator with global security responsibility or
by a select committee in charge of the individual systems.

Definition 2: (Permitted Access) Permitted access is
a binary relation F' on U, V; where Y(u,v) € F, u € V;,
veV,and i #j.

The fact that (u,v) € F indicates that it is thought that
entity u (in system G;) should be allowed to access entity
v (in system G;). Note that it is possible to have both

(u,v) € F and (v,u) € F.

In our example, suppose that it is decided that interop-
eration should allow Bob to access Fred (i.e., his file) and
Charles to access Alice. Then the global system is in Fig-
ure 3 where arcs belonging to F' are represented as dotted
lines.

Fig. 3. Interoperation of Two Systems

The interoperation may also mandate a set of restricted
access R, as follows.

Definition 3: (Restricted Access) Restricted access is
a binary relation R on U™, V; such that V(u,v) € R, u € V;,
vEV;,and i #j.

This is similar to a negative entry in an access control list
[11]. The purpose is to explicitly safeguard certain parts
of the system when the potential implications of introduc-
ing F' are unclear. In our example, we may forbid access
(Diana, Eve). R takes precedence over F.

To give the definition of secure interoperation for a fed-
erated system @ = (V', A’) consisting of the n subsystems,
where V! = U, V; and A’ = (U ; A, UF) — R, recall that
the autonomy principle requires that a legal access in A;
remain legal in A', i.e., if (u,v) x A; then (u,v) x A’. On
the other hand, the security principle requires that an ille-
gal access in A; remain illegal in the interoperation, i.e., if
(u,v) & A; then (u,v) ¢¢ A’. In addition, all access in R
should be explicitly restricted — that is, A’ N R = (.

Definition 4: (Secure Interoperation) Given G; =
Vi, 4i),n =1,...,n. Q@ = (Ur,V;, B) is a secure inter-
operation if BN R = (), and Yu,v € V;, (u,v) < 4; if and
only if (u,v) x B.

F and R may contradict each other, and other security
violations can also occur as a result of interoperation. For
example, with a different F', as illustrated in Figure 4, Bob
can access Alice indirectly through Diana, even though this
access is illegal within the research organization.

In situations like this, F' may need to be changed or
reduced to remove security violations (recall that R takes
precedence over F'). Thus, given G;,i = 1,...,n, F, and
R, our aim is to find a federated system @ = (W, B), where
W =uUr,V,and B C (U,4;UF)— R, such that Q is a
secure interoperation.

Fig. 4. Security Violation Caused by Interoperation

V. COMPLEXITY

For convenient discussion, we mark all arcs belonging
to G;,i = 1,...,n, green, mark all arcs in the permitted
access set F' purple, and mark all arcs in the restricted
access set R red.

The first problem we encounter is to decide if a given
interoperation is secure.

Problem 2: (Security Evaluation) Given G; =
Vi, A3),1 = 1,...,n, permitted access F, and restricted
access R. Is (UL, V;, (UL, A; UF) — R) a secure interop-
eration?

Theorem 2: Security evaluation is in P.

Proof: We prove the theorem by giving a polynomial-
time algorithm to detect security violations. Let A; denote
the transitive closure of 4;, and BT denote the transitive
closure of B = (U?_;A; UF) — R. The algorithm is as
follows.

First, obviously B N R is an empty set. Then, compute
B* and Af,i = 1,...,n, and check that B* induced by
(i-e., restricted to) V; is a subset of A}. If any checking
fails, report security violation; otherwise, report secure.
The correctness of the algorithm is obvious, noting that
the definition of B automatically satisfies the autonomy
requirement.

The complexity of the algorithm is the complexity of
calculating the transitive closures O(| U ; V;|®) plus the
complexity of the comparisons O(| U2, V;|?), so an upper
bound is O(| U, V;|®). [|

If B= (Ur,A;UF)— R is insecure, we can remove
the security violations by reducing F' until the resulting
interoperation is secure. In other words, we can look for
S C F such that C = (U, 4; US) — R is secure. This is
trivial because S =) is definitely a secure solution.

To find nontrivial secure solutions, one choice is to look
for a secure solution that includes all other secure solutions.
In other words, find S C F such that C' = (U, 4;US)—R
is secure and, for any secure solution 7', T C §. Unfortu-
nately, such solutions do not always exist, as is shown by
the following counterexample.

Consider the interoperation of systems

G1 = ({al,a2,a3},{(al,a2),(a2,a3)}) and G =

({b1,b2,b3},{(b1,02), (b2,b3)}), as illustrated by
Figure 5. Suppose F = {(b3,a2),(a3,b2)},
which obviously causes a security violation be-
cause access (a3,a2) is legal in the federated
system but illegal in G;i. One secure solution
is S; = {(a3,b2)}. Another secure solution is
S2 = {(b3,a2)}. But any solution containing both
S1 and S> contains F', which causes a security vi-
olation.

Fig. 5. All-Inclusive Solutions May Not Exist

An alternative in finding nontrivial secure solutions is
to look for solutions that cannot be expanded any further.
In other words, find a secure solution S C F such that,
for any secure solution 7', S € T. This problem is in P,
as the following polynomial-time algorithm demonstrates:
start with an empty solution S; add elements in F' to S one
by one, and only if the addition will not cause a security
violation (recall that security evaluation is in P); repeat
this process until no more elements can be added. The
correctness of this algorithm is obvious.

The three choices described so far do not give natural
optimality measures. For example, a solution may turn
out to contain just one arc from F' although the exclusion
of this single arc would allow the addition of two other
arcs, with the latter intuitively facilitating more informa-
tion exchange. Therefore, we propose two definitions that
are more natural. From now on, we stipulate that F' #
because the secure interoperation problem disappears when
F =0 (and thus R = 0).

One natural optimality measure is to maximize direct
data sharing. Take the interoperation represented in Fig-
ure 4, for example. Arcs a and d (or ¢ and d) cause a
security violation. To reduce a minimum number of arcs
from F', it is better to remove d so that both a and ¢ can
be preserved.

Problem 3: (Maximum Secure Interoperation) For
any positive integer K < |F|, is there a secure solution S
such that S C F and |S| > K?

Theorem 3: Maximum secure interoperation is NP-
complete.

Proof: The problem belongs to NP because a non-
deterministic machine can guess a solution at random and

verify its autonomy and security properties in polynomial
time (refer to Theorem 2 on security evaluation).

The rest of the proof is to reduce a known NP-complete
problem, the Feedback Arc Set problem [12, p.192], to a
restricted case of our problem at hand. We first review the
Feedback Arc Set problem:

Given a directed graph G = (V, A), positive in-
teger K < |A|. Is there a subset A’ C A with
|A’| < K such that A’ contains at least one arc
from every directed cycle in G?

The restricted case of Problem 3 is when all individual
systems are of the form G; = ({u;,v;}, {(us,v:)}), F con-
tains no directed cycles, and R = (). Here, the only type of
security violation is a directed cycle (in the federated sys-
tem) containing a green arc (u;,v;), because access from v;
to u; would become possible via such a cycle. Moreover,
any cycle must contain at least a green arc because there
are no red arcs and no all-purple cycles.

Our reduction, shown in Figure 6, is as follows. Given
any G = (V, A), we define G' = (V', A") as follows. V'
is formed by splitting every vertex u in V into a pair of
vertices u; and us. For each pair of such vertices, A’ has
an arc (ug,uz). Let ({u1,u2},{(u1,u2)}) denote an indi-
vidual system. For every arc in A that ends at u, there is a
corresponding arc in A’ that ends at u;, and for every arc
in A that departs from u, there is a corresponding arc in
A’ that departs from us. Let FF = A’. Clearly F' does not
contain any cycle.

%
G
EoROn
G,

Fig. 6. Reduction

Next we show that this reduction is a one-to-one map-
ping between the two problems in that A" is a solution
for the Feedback Arc Set problem in G, with |A"| < K, if
and only if § = (A’ — A") is a solution of maximum secure
interoperation in G', with |S| > |A'| — K.

Suppose A" is a solution for the Feedback Arc Set prob-
lem in G, then A" C A"and [A"|< K. Let S=A4"-4". S
does not contain directed cycles in G, thus it does not con-
tain directed cycles in G’ either because there is exactly
one arc connecting each pair of splitted vertices. There-

fore S does not cause a security violation. Moreover, since
A" C A', we have |S| = |A'—A"| = |4"|-|A"| > |A'|- K.
Thus, S is a solution to maximum secure interoperation in
G'.

On the other hand, suppose S is a solution to maximum
secure interoperation in G’. Since S does not contain di-
rected cycles, A” = A’ — S must contain at least one arc
from each directed cycle in A'. Because S C A’ and |S| >
|A| K, |A"| = |A'—S| = |4'|~|S| < |4'|~(4'|-K) = K.
Therefore, A" is a solution to the Feedback Arc Set prob-
lem in G. |

For an NP-complete problem, one naturally seeks good
approximation algorithms. We now prove that finding cer-
tain approximate solutions is also NP-complete. Given a
federated system G, we use X (G) to denote a solution ob-
tained by an approximation algorithm, of size | X (G)|, and
OPT(G) to denote the optimal solution, of size |OPT(G)|.

Corollary 1: If P # NP, then no polynomial-time algo-
rithm X (G) for the maximum secure interoperation prob-
lem can guarantee |OPT(G)| — |X(G)| < K for a fixed
constant K.

Proof: Suppose to the contrary that X is indeed such
an approximation algorithm with guarantees. We show
that X can be used to construct a polynomial-time algo-
rithm Y that solves the maximum secure interoperation
problem, which contradicts the assumption that P # NP.

Given G and a positive integer K, our algorithm Y con-
structs G’ that consists of K + 1 isomorphic copies of G
where the copies are not connected to each other. (The
theorem is not more difficult to prove when connectivity is
required.) It is easy to see that |OPT(G')| = (K + 1) x
|OPT(@G)|. Furthermore, we can construct a solution for G
with a size of at least | X (G")|/(K +1) merely by taking the
isomorphic copy of G that has the largest solution among
the (K + 1) copies. Thus, (K +1) x [Y(G)| > | X(G")|.

Because X guarantees that |OPT(G')| — | X(G')| £ K,
we have | X(G')| > |OPT(G")|—K = (K+1)x|OPT(G)|—
K. Thus, (K +1) x |Y(G)] > |X(G)| > (K+1) x
|OPT(G)|—K. Thisis (K+1)x(JOPT(Q)|—|Y(G)|) < K,
or |OPT(G)|-|Y(G)| < K/(K +1). This means |Y(G)| =
|OPT(G)| (because solutions must be integers) and thus
Y is a polynomial-time algorithm for the maximum secure
interoperation problem, a contradiction. |

So far we have been working to find maximum subsets
of F' that result in secure interoperation, and Theorem 3
and its corollary suggest that this is hard.

Another natural measure of optimality is to maximize
direct and indirect information sharing by working on the
whole federated system. The aim is to find a secure inter-
operation with a maximum number of legal access, instead
of looking for a secure solution F' of a maximum size. That
is, we change F' as long as the new F' does not introduce
an access that is illegal under the initial set F'.

Take the interoperation represented in Figure 4 again,
for example. Arcs a and d (or ¢ and d) cause a security
violation. Previously, for a solution with maximum size,
it was better to remove d so that both a and ¢ could be
preserved. Now to obtain maximum access, it is actually

better to remove both a and ¢ to preserve d because the
latter facilitates more (albeit indirect) information sharing.

Problem 4: (Maximum-Access Secure Interopera-
tion) For any positive integer K < |(Uf_;4; U F)* — R|,
is there a secure interoperation (U, V;, B) such that B C
(Ur,A; UF)t — R and |B| > K?

Theorem 4: Maximum-access secure interoperation is
NP-complete.

Proof: The problem obviously belongs to NP because
a nondeterministic machine can guess a solution at random
and verify its suitability in polynomial time (recall Theo-
rem 2 that security evaluation is in P).

Again, we reduce the Feedback Arc Set problem to a
subproblem when each individual system is of the form
G; = ({ui,vi}, {(ui,v;)}). Given any G = (V, A), our re-
duction is identical to that in the proof of Theorem 3, as
shown in Figure 6. We compute the transitive closure of
the new graph G' and call it G" = (V', (A")*).

We aim to prove that A” is a solution to the Feedback
Arc Set problem in G if and only if B = A’ — A” forms a
secure interoperation in G”, with |B| > |A'| — K.

In the set of arcs introduced by computing the transi-
tive closure, namely ((A’)* — A'), if an arc is within one
single system G, then it must be of the form (u2,u1), be-
cause (u1,us2) is already in G;. Therefore, a new arc in
G; will cause a security violation and cannot be present
in any secure interoperation. Define R to be the subset of
(A")* — A’ that contains all arcs connecting two different
systems. This definition of R effectively removes from any
secure interoperation all arcs added when computing the
transitive closure, thus the subproblem becomes the Max-
imum Secure Interoperation problem, and the rest of this
proof is essentially the same as that of Theorem 3. |

Corollary 2: If P # NP, then no polynomial-time algo-
rithm X (G) for the maximum-access secure interoperation
problem can guarantee |OPT(G)|—|X (G)| < K for a fixed
constant K.

Proof: Similar to the proof of Corollary 1. |

The above results show that the problems we are inves-
tigating are mostly NP-complete. Nevertheless, we have
found a special case where finding an optimal solution takes
only polynomial time.

Problem 5: (Simplified Maximum-Access Secure
Interoperation) Suppose that every G; consists of a sin-
gle directed path and graph (U7, V;, F') is acyclic. For any
positive integer K < (U, A; U F)*|, is there a secure in-
teroperation (U, V;, B) such that B C (U?"_; A;UF)* and
|B| > K?

Theorem 5: Simplified maximum-access secure interop-
eration is in P.

Proof: We prove by constructing a polynomial-time
algorithm to find the optimal solution. As before, we mark
arcs in A; green and arcs in F' purple. We mark all the
other arcs in (U?_; A; U F)" yellow. Since G; consists of a
single directed path and F' does not contain directed cycles,
a security violation occurs if and only if there is a directed
cycle in the transitive closure Gt = (U™, V;, (U, A; U
F)*). Thus, our objective is to find the maximum acyclic

subgraph of G that also contains all the green arcs (to
preserve autonomy). In other words, we want to remove a
minimum number of arcs in order to remove all cycles.

Note that in a transitive closure, the subgraph induced
by all vertices on a cycle is a complete graph — where each
pair of vertices is connected by arcs in both directions —
so Gt can be viewed as a collection of complete graphs
plus arcs between them. These in-between arcs do not
introduce cycles, thus any maximum interoperation must
include them. Therefore, our task is reduced to finding in a
complete graph the maximum subgraph that does not have
cycles (since the number of such complete graphs in GV is
polynomial).

By induction, we can easily prove a lemma that for a
complete graph of m vertices, the maximum acyclic sub-
graph (denoted as G(k)) contains exactly m(m —1)/2 arcs.
This is obviously true when m = 2 since m(m — 1)/2 = 1.
Suppose the lemma is true for m = k. For m = k + 1,
we argue that, after adding one more vertex to G(k), we
can add exactly k arcs to form G(k + 1) without intro-
ducing cycles. First, we can add k arcs without introduc-
ing cycles: each new arc departs from an existing ver-
tex and arrives at the new vertex. Second, if we add
k + 1 arcs, then since G(k) contains only k vertices, there
are at least two arcs connecting the new vertex and an
existing vertex. These two arcs are necessarily in op-
posite directions and therefore form a cycle. Therefore,
IGk+1)|=|Gk)|+k=k(k—1)/2+ k= (k+1)k/2.

Given the above lemma, we can arrange the vertices in
a left-to-right line such that vertices in V; are grouped to-
gether first, from left to right in descending order, so that a
vertex can always “access” the one on its right side. Then
vertices in V5 are similarly lined up, and so on. Under such
an arrangement, all green arcs are in the direction of left to
right. Therefore, we only need to delete all arcs pointing
from right to left, which are either purple or yellow, and we
have found a maximum acyclic subgraph that contains all
the green arcs. The whole process is clearly in polynomial
time. ||

Next we turn to another related problem. Suppose that
the initial interoperation is already secure, or that an ap-
proximate or optimal solution has been found. Here the set
F may contain some arcs that are redundant in the sense
that data sharing provided by them is already provided by
other permitted access. Therefore, it is quite natural to
consider reducing the size of F' as much as possible.

Problem 6: (Minimum Representation) For any pos-
itive integer K < |F|, is there a subset F' C F' such that
|F'| < K and that the set of legal access remains unchanged
when F is replaced by F'?

Theorem 6: Minimum representation is NP-complete.

Proof: The subproblem when all 4;,7 =1,...,n, and
R are empty sets is identical to the known NP-complete
problem of Minimum Equivalent Digraph [12, p.198]. H

This result implies that, unless P=NP, any polynomial-
time algorithm for finding a secure interoperation cannot
guarantee to result in a minimum representation.

Nevertheless, if we remove the constraint that reduction

can take place only within F' — that is, we ask if there is a
F' C UL, ;_1:2;Vi x Vj such that |[F'| < K and that the
set of legal access remains unchanged when F' is replaced
by F' —then the problem is equivalent to Transitive Reduc-
tion [12, p.198], which is solvable in polynomial time. This
type of reduction may be useful in a preprocessing step
to reduce the problem space of any algorithm used subse-
quently. However, such a measure means that the setup
of individual systems may be changed, which may not be
desirable for other reasons.

VI. COMPOSABILITY

To reduce the complexity of finding maximum secure in-
teroperation, one area for exploration is the topology of
system interoperation. In some federated systems, for ex-
ample, interoperation is accomplished by having a master
system interacting with other systems in local interopera-
tion [1]. We now prove that in such a configuration, the
global interoperation is secure if and only if each local in-
teroperation is secure.

Given systems G; = (V;, 4;),1 = 0,1,...,n, where Gy
is the master system, let Go_; = (Go,G;, F;) denote the
local interoperation between Go and G; with permitted
access set F;, ¢ = 1,...,n. The global system is thus
G' = (Ui Vi, (Ui 4) U (Ui, F)).

Problem 7: (Federated Se-
cure Interoperation) Given secure Go_;, 1 = 1,...,n.
Is G’ secure?

Theorem 7: G' is secure if and only if Go_; is secure,
1=1,...,n.

Proof: Any local interoperation of a secure global
interoperation is automatically secure. Thus we need only
to show that the security of all the local interoperation
guarantees the security of the global federated system. By
two case studies, we show that, in the federated system,
there cannot be a legal access that is illegal in either the
master system Gy or a satellite system G;.

Suppose there is an access (a, b) that is legal in the fed-
eration but is illegal in the master system G,. Because any
local interoperation is secure, the chain of access from a to
b involves Gy and at least two other systems. As depicted
in Figure 7, there must be an access chain from a in Gy to
outside, which reenters Gy at some vertex ¢, goes out to
G;, and reenters Gy again leading to b.

Clearly access (a, c) must be illegal in Go because other-
wise access (a,b) would be legal in Go_;, which contradicts
the assumption that Go_; is a secure local interoperation.
But apparently (a,c) is legal in the federated system ex-
cluding G;, thus after excluding G;, the rest of the feder-
ation must still be insecure. By induction we can see that
this implies that there exists an insecure local interopera-
tion Go—j, a contradiction.

Similarly, suppose there is a access (a,b) that is legal in
the federation but is illegal in some satellite system G;,i #
0. Again, the chain of access from a to b involves Gy,
G, and at least another system. As depicted in Figure 8,
there must be an access chain from a in G; to ¢ in Gy,
which eventually leaves G at some vertex d to enter G; at

Fig. 7. Security Violation in Go

vertex b.

Clearly access (¢, d) must be illegal in Gy because other-
wise access (a, b) would be legal in Go_;, which contradicts
the assumption that Go_; is a secure local interoperation.
But apparently (c,d) is legal in the federated system ex-
cluding G;. Thus, after excluding G;, the rest of the feder-
ation must still be insecure. By induction we can see that
this implies that there exists an insecure local interopera-
tion Gy—j, a contradiction. |

The above theorem implies that local secure interopera-
tion, and thus local maximization, can be computed inde-
pendently and in parallel.

Corollary 3: (Maximum Federated Secure Interop-
eration) G’ is a maximum secure interoperation if and
only if Go_; is a maximum secure interoperation, i =
1,...,n.

The two very positive results above indicate that in a
star-like configuration, global (maximum) secure interoper-
ation can be achieved in a distributed fashion, locally, and
incrementally as more systems join the interoperation. We
can thus say that (maximum) secure interoperation is com-
posable. Note that these results do not necessarily imply
that maximum-access secure interoperation is composable.

The proofs in Theorem 7 clearly extend to any configu-
ration of a tree structure in that if all local interoperation
between neighboring systems are secure (and maximum),
then the global interoperation is also secure (and maxi-
mum).

Corollary 4: (General Federated Secure Interoper-
ation) Secure interoperation and maximum secure interop-
eration are composable in any tree-structure configuration.

In a ring-structure configuration (or any configuration
containing a ring), the composability theorem does not al-
ways hold. A simple counterexample is when each F; con-

Gi

Go

Fig. 8. Security Violation outside Go

tains only one arc; thus, each local interoperation is secure,
but the collection of these plus a green arc forms a cycle
and permits an illegal access. The implication is that se-
cure interoperation can be joined together as long as no
ring is formed.

From the proof details, we expect that the above compos-
ability results generalize beyond the simple access control
structure we have assumed in our current discussion.

VII. AN APPLICATION IN DATABASES

An obvious application area is the interoperation of het-
erogeneous databases. As more secure databases are built
and connected through computer networks, a wide variety
of secure data sources is becoming accessible. One of the
biggest challenges presented by this technology is the se-
cure interoperation of databases containing data with mis-
matched access control structures [13]. Providing secure
interoperation not only makes it possible to reliably share
data in isolated military and civilian databases, but also
increases users’ confidence and willingness in such sharing.

A key requirement in the interoperation of heterogeneous
and especially legacy databases is autonomy [1]. Since
these databases were often independently designed to each
serve the needs of a single organization, and significant
investment has already been made into them, the inter-
operation must respect their autonomy. Our definition of
secure interoperation properly captures the autonomy re-
quirement in security.

The interoperation of secure databases presents new re-
quirements. While the concern in the interoperation of
databases with homogeneous access control structures is
how to maximize data sharing between databases, such
maximization in the interoperation of databases with het-
erogeneous access control structures has to be tempered by

security considerations. In other words, the data sharing
caused by database interoperation should not compromise
the security of individual databases. This requirement is
also properly captured by our definition of secure interop-
eration.

Applying our complexity analysis to the autonomous and
secure interoperation of heterogeneous databases with mis-
matched access control structures, we can see that the de-
tection of security breaches in interoperation is easy, and
the hard problem is the elimination of security breaches
while maximizing data sharing. Although the general prob-
lem is not tractable, our results provide useful guidelines in
solving this problem in practice. Below are some example
guidelines.

o Although the general problem is NP-complete, the
most common case in multilevel secure databases,
where access control structures form total orders, is
polynomial-time solvable, as is shown by Theorem 5.

o Although solving the general problem involves examin-
ing globally all the interoperating databases and links
between them, for the widely adopted case of feder-
ated database systems [1], in which all data sharing is
carried out through the federated schema, the prob-
lem can be solved in a pairwise manner, as is shown
by Theorem 7. This implies that the problem can be
solved incrementally as new databases join the feder-
ation.

In addition, the interoperation of secure databases sug-
gests other natural optimality measures, whose computa-
tional complexity we are studying now. For example, we
might want to maximize the number of databases inter-
operable, thus an optimal solution might link as many
databases as possible, even if the amount of data sharing
is not necessarily maximized.

VIII. RELATED WORK

Secure interoperation can in some sense also be viewed
as composing secure systems. A number of composition
methods have been proposed for building a large system
out of secure components (e.g., [14]). These previous re-
sults are mostly focused on composing systems with iden-
tical or compatible security attributes or policies, and tend
to treat the avoidance of covert channels as the most im-
portant requirement. We deal with secure interoperation
of systems with heterogeneous security attributes, and the
composition method we examine is a very natural one that
has been used frequently in practice.

Another related work is a study of interoperation of mul-
tilevel secure databases [15], where the problem is security
label translation. Like us, these researchers recognize that
naive interoperation may cause security violations. They
define a notion called relation consistency and propose a la-
bel insertion algorithm to achieve that. But unlike us, they
do not provide any complexity or composability result.

A canonical security model was proposed for federated
databases [13], where the main concern is the integration
of heterogeneous security policies and the specification of
security constraints in a federated schema. However, the

problem of detecting and eliminating security breaches in
a federated schema is not considered.

IX. SUMMARY AND FUTURE WORK

We have studied the problem of secure interoperation
of systems with heterogeneous access control structures.
We formed the definition of secure interoperation on the
following basic notions: autonomy, which dictates that le-
gal access in one system should remain legal in the global
system, and security, which says that illegal access within
one system should remain illegal in the global system. We
proved that, while the security of a general interoperation
is undecidable, finding a secure solution with some opti-
mality is NP-complete even for a very simple type of ac-
cess control list. Thus, finding similar optimal solutions
for more general access control lists can only be harder.
Nevertheless, composability reduces complexity in that se-
cure global interoperation can be obtained incrementally
by composing secure local interoperation. These results,
as shown by the database application discussed, can help
steer system design effort to searching for approximation
algorithms and partial optimization, for example, by using
heuristic algorithms.

For future work, one direction is to improve the theoret-
ical results. This includes obtaining results on the hard-
ness of obtaining percentage-wise approximation solutions,
where some recent work [16] may be helpful, and investi-
gating other optimality measurements that are applicable
to particular environments. We have so far assumed that
R represents direct access that are undesirable, such as a
negative entry in an access control list. This means that
an indirect access may still be possible, as in the case of a
typical discretionary access control scheme. If we interpret
restricted access as banning both direct and indirect access,
then similar theorems might be obtained. For example,
Theorem 2 trivially holds. Theorem 3 (and its corollary)
should also hold because its proof is about the subcase
when R = (). Developing near-optimal algorithms, possi-
bly probabilistic algorithms, to obtain good average-case
performance is also desirable.

Another direction is to examine ways to distribute the
process of removing security violations from a central con-
trol point to individual systems, for example, by defining
interfaces that preserve security. This is analogous to the
development of distributed concurrency control. We can
also explore various topologies of system interoperation, as
in Theorem 7. Another possibility is to divide the overall
task of finding maximum secure interoperation into pre-
processing and run-time processing, because the latter on
average probably does not involve a large number of sep-
arate systems. This idea of delaying the decision to run
time can have other benefits. For example, given two per-
mitted access that together will violate security, instead of
deciding a priori (and somewhat arbitrarily) to remove one
of them, we can decide to keep the one that is used first
during run time. This is similar to the Chinese Wall pol-
icy (e.g., [17]) where one access will automatically prohibit
future access of another kind, but which access to prohibit

is not decided in advance.

ACKNOWLEDGMENT

Our colleagues at SRI, Pat Lincoln, Teresa Lunt, and
Peter Neumann provided valuable comments on earlier ver-
sions of this paper. We are grateful to John McLean of the
Naval Research Laboratory for spotting a serious technical
error introduced in a more recent draft.

This work was supported in part by the U.S. Depart-
ment of Defense Advanced Research Projects Agency and
U.S. Air Force Rome Laboratory under Contract F30602-
92-C-0140.

REFERENCES

[1] A. Sheth and J. Larson, “Federated Database Systems for Man-
aging Distributed, Heterogeneous, and Autonomous Databases”,
ACM Computing Surveys, vol. 22, no. 3, pp. 183-236, September
1990.

[2] U.S. National Computer Security Center, Trusted Network In-
terpretation, July 1987, NCSC-TG-005 version-1.

[3] NCSC, Trusted Network Interpretation Environments Guide-
line, (U.S.) National Computer Security Center, August 1990,
NCSC-TG-011 version-1.

[4] J.A. Bull, L. Gong, and K.R. Sollins, “Towards Security in an
Open Systems Federation”, in Proceedings of the European Sym-
posium on Research in Computer Security, Toulouse, France,
November 1992, vol. 648 of Lecture Notes in Computer Science,
pp- 3-20, Springer-Verlag.

[5] B.W. Lampson, “Protection”, in Proceedings of the 5th Prince-
ton Symposium on Information Sciences and Systems, Prince-
ton University, March 1971, Reprinted in ACM Operating Sys-
tems Review, 8(1):18-24, January, 1974.

[6] M.A. Harrison, W.L. Ruzzo, and J.D. Ullman, “Protection in
Operating Systems”, Communications of the ACM, vol. 19, no.
8, pp. 461-471, August 1976.

[7] R.S.Sandhu, “The Typed Access Matrix Model”, in Proceedings
of the IEEE Symposium on Research in Security and Privacy,
Oakland, California, May 1992, pp. 122-136.

[8] D.E. Bell and L.J. La Padula, “Secure Computer System: Uni-
fied Exposition and Multics Interpretation”, Tech. Rep. ESD-
TR-75-306, The MITRE Corporation, Bedford, Massachusetts,
March 1976.

[9] C.E.Landwehr, “Formal Models for Computer Security”, ACM

Computing Survey, vol. 13, no. 3, pp. 247-278, September 1981.

J.A. Goguen and J. Meseguer, “Security Polices and Security

Models”, in Proceedings of the IEEE Symposium on Security

and Privacy, Oakland, California, April 1982, pp. 11-20.

M. Satyanarayanan, “Integrating Security in a Large Distributed

System”, ACM Transactions on Computer System, vol. 7, no.

3, pp. 247-280, August 1989.

M.R. Garey and D.S. Johnson, Computers and Intractability,

W.H. Freeman and Co., New York, 1979, Paperback edition

1991.

G. Pernul, “Canonical Security Modeling for Federated

Databases”, in Proceedings of the IFIP TC2/WG2.6 Confer-

ence on Semantics of Interoperable Database Systems, Novem-

ber 1992.

D. McCullough, “A Hookup Theorem for Multilevel Security”,

IEEE Transactions on Software Engineering, vol. 16, no. 6, pp.

563-568, June 1990.

V.E. Jones and M. Winslett, “Secure Database Interoperation

via Role Translation”, in Security for Object-Oriented Systems,

B. Thuraisingham, R. Sandhu, and T. C. Ting, Eds. Springer-

Verlag, London, 1994, A previous version appeared as Technical

Report, Department of Computer Science, University of Illinois

at Urbana-Champaign, April 1993.

S. Arora, G. Lund, R. Motwani, M. Sudan, and M. Szegedy,

“Proof Verification and Hardness of Approximation Problems”,

in Proceedings of the IEEE 33rd Annual Symposium on Founda-

tions of Computer Science, Pittsburgh, Pennsylvania, October

1992, pp. 14-23.

(11]

(12]

(13]

[14]

(15]

(16]

[17] D.F.C. Brewer and M.J. Nash, “The Chinese Wall Security Pol-
icy”, in Proceedings of the IEEE Symposium on Security and
Privacy, Oakland, California, April 1989, pp. 206—214.

[18] L. Gong and X. Qian, “The Complexity and Composability of
Secure Interoperation”, in Proceedings of the IEEE Symposium
on Research in Security and Privacy, Oakland, California, May
1994, pp. 190-200.

Li Gong was born in Beijing, China, and
was educated at Tsinghua University, Beijing
(B.E. with honors in 1985 and M.S. in 1987),
and the University of Cambridge, England (Je-
sus College, Ph.D. in 1990). He is a Computer
Scientist at SRI, researching in distributed sys-
tems and communication networks, particu-
larly in issues of fault tolerance and security.
He is Program Co-Chair of the Third ACM
Conference on Computer and Communications
Security (1996), and served as Program Chair
of the 7th and 8th IEEE Computer Security Foundations Workshops
(1994 and 1995) and as program committee member of various ACM,
IEEE, and IFIP conferences. He is also on the editorial board of the
Journal of Computer Security. He received the IEEE Communica-
tions Society Leonard G. Abraham Prize Paper Award in 1994 and
the IEEE Symposium on Security and Privacy Outstanding Paper
Award in 1989.

Xiaolei Qian received the B.Sc. degree from
Xian Jiao Tong University, Xian, China, in
1982, and the M.Sc. and Ph.D. degrees from
Stanford University, Stanford, California, in
1984 and 1989, respectively, all in computer
science.

She is a Senior Computer Scientist in the
Computer Science Laboratory at SRI Interna-
tional. Her research interests include database
security, semantic interoperation and integra-
tion of heterogeneous databases, and software
architectures. She is also interested in constraint management,
database programming languages, and formal methods.

10

