Lab – SQL Injection

Lab – SQL Injection
Objectives

After completing this lab, you should be able to:
· Exploit a SQL injection vulnerability
· Defend against SQL injection by filtering and sandboxing input with a parameterized query
Overview

Fabrikam has recently introduced a search feature into their product database, but they’ve written it with some rather naïve code. Your first job will be to exploit the SQL injection vulnerability so you understand the implications. Then you’ll go on the defensive and fix the problem.
Scenario

In this scenario, you have a public-facing product search engine that accepts anonymous requests from the Internet. The database where the product information is stored also holds user’s personal and financial information, which is being accessed by malicious parties exploiting a SQL injection vulnerability.

Setup
1. This lab requires SQL Server 2005 or 2000. Whichever you have, you’ll need to run the db.sql script that you can find in the same directory as this document. It will create a sample database called FabrikamSampleProductDatabase. You can run this query interactively or from the command line using OSQL.EXE from an administrative command prompt as follows:

OSQL -E -S "(local)" -i db.sql
2. Open the before\SqlInjectionWeb.sln solution. This is a skeletal application where you will do your work. There is also a fully completed lab in the after\ directory that you can use to compare with your work if you get stuck.
Part 1 – Attack
In this first part of the lab, you’ll put yourself in the attacker’s shoes to see just how nasty a SQL injection vulnerability will be. This attack is known as blind SQL injection, because we presume no knowledge of the underlying database. As you’ll see it’s usually pretty easy to figure out what the database looks like if a SQL injection vulnerability is present.

Keep in mind that depending on the version of your database, the results you get (error messages, for example) might not exactly match what this lab manual shows. The lab manual was based on SQL Server 2005.
1. Build the application, then from Solution Explorer, right-click Search.aspx and choose “View in Browser” to launch the application.

a. Keep in mind that it will be connecting to the database using your current login credentials. If you’re not an administrator, you’ll need to make sure you grant yourself permission to use the database.

2. Use the search form as it was intended. Search for “paper” and then “Box” to get a feel for the application.

3. Without looking at the source code, try to imagine what the SQL statement looks like that’s running this query. Write the form of that statement in the space below, with “DATA” as a placeholder for the price being entered in the form. Assume that the developer was naïve and simply concatenates the user input into the query. This footnote
 has a good guess if you aren’t sure.

4. Using what you think you know about the structure of the query, try to build a query that returns all rows no matter what price you specify. Here’s some text that would work: ' or 1=1 -- Try it (there are a total of 6 columns in the database). Try replacing DATA with this string in your sample query from step 3 to help figure out why this works.

a. Remember that any WHERE clause that’s OR’d with 1=1 is going to be true.
b. The leading single quote effectively closes the string opened by the program, allowing the rest of your text to become part of the actual SQL query.

c. Note that two dashes represent a comment – it effectively terminates the line of the SQL command.

You are now in complete control of the SQL query. From here on out, realize you are in a very powerful position: you are submitting arbitrary SQL to a database using what is most likely a privileged database connection. If you’re not careful from here on out, you may end up having to reinstall SQL Server. So follow along carefully and have fun. It’s not often you get to wear the black hat!

5. We are now going to walk you through a series of steps that will allow you to pilfer data from the sample database. What we’ll do is hijack a column of the output from the search’s output table to display whatever data we want from the database. But first we need to discern a bit more detail about the actual query being used.

6. Submit the following string for the price: ' union select null -- You should get an error message similar to this one: “All queries combined using a UNION, INTERSECT or EXCEPT operator must have an equal number of expressions in their target lists.” (Note that sites will not display error message of this detail to clients if the customError element in web.config is left to its default setting of 'RemoteOnly'. If you set it to 'Off' then these messages will be displayed to remote clients - something you never want to do on a live site!).

7. What you’ve just done is added a single row to the output, but your row doesn’t have the same number of columns as the original query. That’s illegal. So keep adding nulls! The point is to figure out how many columns the original query used and to match that number. So try replacing null with null, null and you should get the same error. Keep adding nulls this way until your query succeeds. Eventually you’ll see an extra empty row – that’s the row that you control!
8. Now let’s figure out what type these columns are. Try the following query: ' union select $0, null, null -- We’re submitting a value of type money for the first column. Don’t forget the double dashes at the end to terminate the SQL statement early – you’ll see them throughout our examples.

9. What error did you get this time? “Cannot convert a char value to money. The char value has incorrect syntax.” Well, now you know the type of the first column: it’s not a money column – it’s a character column. This is a simple example of an attacker doing reconnaissance on a target. In this case, you’re discovering more about the shape of the query you’re going to be subverting.

10. If you were to do the same thing to the second (Description) column, you’d discover that it was a character field as well. Because it’s nice and wide, you’re going to use that column to display the results of arbitrary SQL queries from the database.

11. The first query we want to run will tell us a little more about the database. Is it SQL Server? Pretend you don’t know, and submit the following: ' union select null, @@version, null -- You should have gotten back a nice description of the patch level of SQL Server as well as the version of the operating system (and its patch level). Think about how this could help an attacker?

12. Let’s see what databases are on this SQL Server: ' union select null, name, null from sys.databases -- Do any of those database names look like they belong to this application?

13. To ensure that you don’t damage your SQL Server installation, we’ll only poke around the FabrikamSampleProductDatabase. So let’s see what tables are in that database: ' union select null, table_name, null from FabrikamSampleProductDatabase.information_schema.tables --
14. It looks like there’s a Products table and a Users table. Let’s poke around the users table a bit – that sounds interesting: ' union select null, column_name, null from FabrikamSampleProductDatabase.information_schema.columns where table_name='users' --
15. Wow, there’s some yummy information in that table! Let’s dump the entire user database. I’ll bet those users have the same password at lots of different sites on the Internet. To dump the user table, we’ll need to concatenate the columns we want to see into the one column we’re using to display data, but that’s easily done: ' union select null,email+', '+password+', '+cc_type+', '+cc_num+', '+cc_exp+', '+cc_vcode,null from Users --
16. Finally, let’s do some damage. Let’s change the price for the MP3 player so we can afford it! Run the following query, then search for MP3 to see if it worked: ' update products set price=.01 where description='MP3 Player' --
17. If you’re really feeling evil, you could start dropping tables, but don’t do that unless you feel like reinstalling the database.
18. Think of some other queries you could run that would be even more damaging. Just think of them for now though.
a. ' exec xp_cmdshell 'net user hacker P@ssw0rd /add'
b. ' exec xp_cmdshell 'format c:'
c. The possibilities are endless.
Part 2 – Defense
1. Back in Visual Studio, open the code for the Search.aspx page and look at how the query is formed. Concatenating SQL queries with unfiltered user input is very dangerous, as you have seen!

2. The first step we can take toward closing the SQL injection hole is to filter the user input. If you don’t allow single quotes in your descriptions, you could use a regular expression to ensure that no single quotes are used in the search field. But since there are many words that have single quotes in them (especially names like O’Brien) you might not have this option. In that case you can escape the single quotes by doubling them up. It’s always a good idea to filter any input that’s going to be sent to a database.
a. Escape any single quotes submitted via the search string by updating the line of code that reads the search string as follows:
string searchString = txtSearch.Text.Replace("'", "''");

b. Now try to search the product database using ' or 1=1 -- as your search query. You should get no results, because the single quote is being treated as data instead of part of the SQL statement, and there are no descriptions with single quotes in them.

1. The other thing you should always do is sandbox the input data. This takes the user input out of the control channel (the SQL command string) and into a data channel (a parameter that goes along with the query). With a SQL command, this means using a parameterized query, and the SqlDataSource in ASP.NET makes this easy.

a. Go back to design view for the search page (Shift-F7) and bring up the property sheet for the SqlDataSource control on the page. Find the SelectCommand property and push the “…” button to bring up the query editor.

b. Set the query to the following value (note the use of a parameter!):

select sku, description, price from Products where description like @s order by price
c. Now press the Refresh Parameters button. You can see that this designer tool was designed from the ground up to use parameters.

d. Since the value will need to be set dynamically (you need to add the wildcards around it) go ahead and press OK to save your settings.

e. Press F7 to go back to the code and remove the line of code that was setting the SqlDataSource.SelectCommand property. Replace it with the following line of code, which sets the value of the parameter for the query:

dataSource.SelectParameters["s"].DefaultValue = '%' + searchString + '%';
2. Build the application and try attacking it again. Everything should work fine, and the SQL injection vulnerability has been mitigated two different ways, by filtering the input, and by sandboxing the input using a parameterized query.
Conclusion

In this lab you’ve seen first hand how devastating a SQL injection vulnerability can be. Keep in mind that SQL injection is only one of a myriad of injection attacks, so always be careful whenever including user input in any form of command or query, be it a SQL command, an XPath query, an LDAP query string, or even a command line argument to a program. Always try to filter based on what you know is good, and sandbox wherever there are different channels for control and data. Keep user input in a data channel wherever possible!
Resources

· Patterns & Practices Security Guidance
· How To: Protect From Injection Attacks in ASP.NET
· Writing Secure Code, 2cnd Edition, Howard & LeBlanc

� select colA, colB from someTable where c like %DATA% order by colC

