
OPENID
Getting started with OpenID

Understanding the OpenID protocol messages

Creating OpenID-enabled web sites

Running OpenID server

Using OpenID in the Enterprise

RAFEEQ UR REHMAN

The OpenID Book

A comprehensive guide to OpenID protocol

and running OpenID enabled web sites

G E T R E A D Y F O R

 Page 2 of 247

Copyright © Notice

Copyright © 2008, Conformix Technologies Inc.

No part of this book can be distributed or reproduced in any form or shape without written

permission of the Author and the Publisher.

Disclaimer

The book is made available without any direct, indirect, or implied warranty of any kind, including

the correctness of material presented here. The author and the publisher of this book are not

responsible for any direct or indirect loss as a result of use of this book.

Trademarks and Service Marks

All references to trademarks and service marks, used in this book are the property of respective

owners.

Published By: Conformix Technologies Inc.

Web: http://www.conformix.com

Email: info@conformix.com

Phone: 800-747-0283

ISBN13: 978-0-9724031-2-2

ISBN: 0-9724031-2-4

 Page 3 of 247

To

The Open Source Community

And

All who spread the knowledge

 Page 4 of 247

Table of Contents

1 INTRODUCTION TO OPENID .. 17

1.1 A FIVE MINUTE TOUR OF OPENID .. 21

1.1.1 Creating an Account with Verisign PIP.. 22

1.1.2 Using PIP ID with LiveJournal Web Site ... 27

1.1.3 Using the OpenID to Login to Multiple Web Sites .. 30

1.2 SO WHAT HAPPENED BEHIND THE SCENES? ... 31

1.3 ENTERING USER SETTING .. 33

1.4 OTHER IDENTITY PROVIDERS ... 34

1.5 OPENID IDENTITY URL COMPOSITION ... 34

1.6 CHAPTER SUMMARY .. 35

1.7 REFERENCES ... 36

2 AUTHENTICATION AND AUTHORIZATION .. 37

2.1 WHAT IS AN IDENTITY? ... 38

2.2 AUTHENTICATION AND AUTHORIZATION ... 39

2.3 USERNAME AND PASSWORD ... 41

2.4 AUTHENTICATION METHODS ... 42

2.4.1 Password Authentication ... 42

2.4.2 PIN Authentication ... 43

2.4.3 One Time Password (OTP) Authentication .. 44

2.4.4 Smart Card Authentication .. 44

2.4.5 Biometric Authentication.. 45

2.4.6 Certificate Based Authentication .. 45

2.4.7 USB Devices .. 46

2.5 WEAK AND STRONG AUTHENTICATION ... 46

2.5.1 Two – Factor Authentication ... 47

2.6 SINGLE SIGN-ON (SSO) AND FEDERATED IDENTITIES ... 48

2.7 IDENTITY MANAGEMENT DILEMMA .. 49

2.8 DIRECTORY SERVICES .. 50

 Page 5 of 247

2.9 RISK BASED AUTHENTICATION AND AUTHORIZATION .. 51

2.10 NEW AUTHENTICATION MECHANISMS .. 51

2.10.1 OpenID .. 52

2.10.2 Microsoft Windows CardSpace .. 52

2.10.3 Bandit ... 53

2.10.4 Higgins.. 53

2.10.5 LID .. 53

2.10.6 Yadis ... 53

2.11 CHAPTER SUMMARY .. 55

2.12 REFERENCES ... 56

3 OPENID PROTOCOL AND MESSAGES ... 57

3.1 OPENID CONCEPTS AND TERMINOLOGY ... 58

3.1.1 OpenID Definitions ... 58

3.1.2 Communication among OpenID System Components 59

3.2 DIRECT AND INDIRECT COMMUNICATION.. 63

3.3 OPENID MODES OF OPERATION ... 63

3.3.1 Dumb Mode Communications Flow ... 63

3.3.2 Smart Mode .. 67

3.3.3 Using Ajax with Dumb and Smart Modes ... 71

3.4 OPENID IDENTITY URL PAGE ... 71

3.5 OPENID SPECIFICATION VERSIONS... 73

3.6 OPENID MESSAGES ... 74

3.6.1 The associate Request Message .. 75

3.6.2 The associate Response Message .. 78

3.6.3 The checkid_setup and checkid_immediate Request Messages 80

3.6.4 The checkid_setup and checkid_immediate Response Messages 83

3.6.1 The check_authentication Request Message .. 86

3.6.2 The check_authentication Response Message.. 87

3.7 HOW OPENID WORKS: SOME SCENARIOS ... 88

3.7.1 Scenario One: First Time Login to a Web Site Using OpenID in Dumb Mode

 88

3.7.2 Scenario Two: Login to a Trusted Web Site Using OpenID in Smart Mode 89

3.8 PROBLEMS SOLVED BY OPENID .. 89

 Page 6 of 247

3.9 OPENID SUPPORT IN DIFFERENT LANGUAGES .. 90

3.10 MAJOR COMPANIES SUPPORTING OPENID .. 91

3.11 CHAPTER SUMMARY .. 91

3.12 REFERENCES ... 92

4 CREATING OPENID CONSUMER WEB SITES...................................... 93

4.1 OPENID CONSUMER: STEP-BY-STEP PROCESSING ... 95

4.2 RUNNING A SIMPLE CONSUMER USING JANRAIN LIBRARY..................................... 96

4.2.1 The Consumer System Configuration .. 97

4.2.2 PHP Configuration ... 97

4.2.3 Apache Configuration ... 98

4.2.4 Running the Consumer Example .. 99

4.2.5 URL Sent to the OpenID Server ... 101

4.2.6 Storage of Association Information ... 103

4.3 DISCUSSION ON SAMPLE CONSUMER .. 105

4.3.1 Sample index.php File ... 107

4.3.2 Sample try_auth.php File ... 107

4.3.3 Sample finish_auth.php File ... 109

4.4 REQUESTING ADDITIONAL PARAMETERS USING SIMPLE REGISTRATION EXTENSION

 111

4.5 RISK BASED ACCESS CONTROL AND GRADED AUTHORIZATION 117

4.5.1 Sample Web Site Using OpenID Consumer ... 118

4.5.1.1 Backend Database ... 120

4.5.1.2 Source Files ... 121

4.5.1.3 Application Logic .. 126

4.5.1.4 Using Sample Application ... 127

4.5.2 One-Time Authorization .. 131

4.6 STORING CREDENTIALS BY OPENID CONSUMERS ... 131

4.7 WEB BROWSER SUPPORT AND BROWSER PLUG-IN .. 131

4.7.1 Verisign SeatBelt and Firefox ... 132

4.7.2 Sxipper Plug-in ... 134

4.8 OPENID LIBRARIES ... 135

4.9 CHAPTER SUMMARY .. 135

4.10 REFERENCES ... 136

 Page 7 of 247

5 RUNNING OPENID SERVER ... 138

5.1 PHP OPENID SERVER INSTALLATION .. 141

5.1.1 Downloading and Extracting Files ... 141

5.1.2 Configuring Apache .. 142

5.1.3 Installing Smarty .. 143

5.1.4 Install and Configure JanRain PHP OpenID Library................................ 144

5.1.5 Configuring MySQL Database ... 144

5.1.6 Updating Configuration Files ... 146

5.1.7 Testing Server ... 149

5.1.8 Testing Consumer with the Server ... 154

5.1.9 Database Changes during Server Configuration 158

5.1.10 Database Table Description ... 162

5.2 DEEP DIVE INTO OPENID PROTOCOL: DUMB MODE .. 165

5.2.1 Yadis and XRD Document .. 166

5.2.2 Indirect communication between Consumer and Identity Provider 167

5.2.3 Identity Provider Asks User for Authentication to IdP 171

5.2.4 Identity Provider’s Positive Assertion to Consumer 173

5.2.5 Verification between Consumer and Identity Provider using

check_authentication Message ... 175

5.2.6 Authentication Completion .. 177

5.3 OPENID ASSOCIATION MESSAGES ...179

5.4 DIFFIE-HELLMAN (DH) KEY EXCHANGE MECHANISM .. 182

5.4.1 Basic Process for Generating DH Keys .. 182

5.4.2 Diffie-Hellman Variants ... 184

5.5 CHAPTER SUMMARY .. 184

6 OPENID EXTENSIONS .. 186

6.1 SIMPLE REGISTRATION OR PROFILE EXCHANGE .. 188

6.1.1 How It Works .. 189

6.1.2 Typical Use Cases ... 189

6.1.3 Message Description ... 190

6.1.4 Simple Registration and Yadis ... 193

6.2 OPENID SERVICE KEY DISCOVERY.. 193

6.2.1 How it Works .. 194

 Page 8 of 247

6.2.2 Typical Use Cases ... 194

6.2.3 Message Description ... 195

6.3 HOW TO SUBMIT NEW SPECIFICATION .. 195

6.4 CHAPTER SUMMARY .. 195

6.5 REFERENCES ... 196

7 OPENID AS ENTERPRISE SOLUTION ... 197

7.1 CROSS COMPANY AUTHENTICATION SOLUTIONS AND OPENID 198

7.1.1 General Architecture for OpenID Cross Company Authentication 199

7.1.2 User Interface for OpenID Server .. 201

7.1.3 Partner/Hosted Web Sites .. 202

7.1.4 Security Controls .. 202

7.2 OPENID FOR INTRANET APPLICATIONS ... 202

7.3 SECURE OPENID AND DIGITAL CERTIFICATES ... 203

7.3.1 Certifi.ca ... 204

7.3.2 Prooveme .. 205

7.3.3 Getting Free Certificates ... 210

7.4 OPENID AND OPENSSO ... 210

7.5 CHAPTER SUMMARY .. 210

7.6 REFERENCES .. 211

8 OPENID PROTOCOL: MISCELLANEOUS TOPICS 212

8.1 OPENID SECURITY ISSUES ... 213

8.1.1 Relay Attacks .. 213

8.1.2 Phishing Attack ... 213

8.1.3 OpenID and Use of SSL ... 214

8.1.4 OpenID and Browser History .. 214

8.1.5 Identity Provider and Trust Issue .. 214

8.2 OPENID AND PRIVACY ... 215

8.2.1 Saving OpenID Credentials on Identity Provider Web Sites 215

8.2.2 Identity Providers Logging .. 216

8.3 OPENID FOR DESKTOP CLIENTS AND MISCELLANEOUS USES OF OPENID 216

8.3.1 Send-a-Message Protocol ... 216

8.4 OPENID AND WINDOWS CARDSPACE ... 217

 Page 9 of 247

8.4.1 Logging into a CardSpace enabled Web Site ... 227

8.5 REFERENCES ... 232

9 GLOSSARY ... 233

10 REFERENCES AND USEFUL LINKS ... 235

10.1 REFERENCES ... 235

10.2 RFCS .. 236

10.3 OPENID LIBRARIES ... 237

10.4 OPENID PROVIDERS .. 237

10.5 MISCELLANEOUS ... 238

11 INDEX ... 240

12 SUPPORT THE FREE BOOK INITIATIVE 243

 Page 10 of 247

Table of Figures

Figure 1-1: Verisign PIP web site home page .. 23

Figure 1-2: Creating a new account using Verisign PIP web site.......................... 24

Figure 1-3: PIP account settings ... 26

Figure 1-4: LiveJournal login page ... 28

Figure 1-5: Authorization and trust request ... 29

Figure 1-6: LiveJournal home page after login using OpenID 30

Figure 1-7: PIP Profile Categories ... 33

Figure 1-8: PIP activity log .. 34

Figure 2-1: Yadis input and output ... 55

Figure 3-1: Communication among different components of the OpenID System

with the URI identifier and the Identity Provider on the same machine. 61

Figure 3-2: Communication among different components of the OpenID System

with Identifier URI and Identity Provider are on different machines. 62

Figure 3-3: Dumb mode communications .. 66

Figure 3.4: Smart mode communication flow, during the first time login. 68

Figure 3.5: Smart mode communication flow and the subsequent login where the

Consumer and Identity Provider have already established a shared secret. 70

Figure 3-6: The flow for the checkid_setup request message. 82

Figure 3-7: The flow for the checkid_setup response message. 85

 Page 11 of 247

Figure 4-1: Running sample Consumer application included in the JanRain

library. ... 100

Figure 4-2: Sample client authentication showing success with the Identity

Provider... 102

Figure 4-3: Use of sample client source files during authentication request

processing. .. 106

Figure 4-4: Requesting multiple optional parameters using simple extensions. 113

Figure 4-5: Requesting multiple optional and required parameters using simple

extensions. ... 115

Figure 4-6: Response for multiple parameters. ... 117

Figure 4-7: Main page for sample Knowledgebase application 127

Figure 4-8: Login page for sample Knowledgebase application.......................... 128

Figure 4-9: Read-only access to knowledgebase ... 129

Figure 4-10: Update access to knowledgebase. ... 129

Figure 4-11: Updating articles in the database. ...130

Figure 4-12: Full access to knowledgebase ..130

Figure 4-13: Status information for SeatBelt. .. 132

Figure 4-14: SeatBelt settings .. 133

Figure 4-15: SeatBelt automatic filling of OpenID URL on OpenID enabled web

site .. 134

Figure 5-1: Set up used for OpenID server, Consumer, and User Agent. 140

Figure 5-2: The welcome screen for the OpenID server. 149

Figure 5-3: New user registration with the OpenID server. 150

Figure 5.4: Completion of your OpenID user registration process. 152

 Page 12 of 247

Figure 5-5: Creating OpenID profiles .. 154

Figure 5-6: Using the sample Consumer application to test new OpenID URL. 155

Figure 5-7: List of optional parameters requested by the Consumer 155

Figure 5-8: Confirmation of OpenID authentication. ... 157

Figure 5-9: Trusted web site list maintained by OpenID server. 157

Figure 5-9: Request and response messages between IdP and Consumer168

Figure 7-1: A typical enterprise OpenID environment enabling CCA. 200

Figure 7.2: List of certificates in Internet Explorer. ... 207

Figure 7-3: List of certificates in Firefox browser. .. 208

Figure 7-4: Detail of Prooveme certificate in Firefox. .. 209

Figure 8-1: Creating a new CardSpace card on PIP web site. 219

Figure 8-2: Importing a card into the CardSpace. .. 220

Figure 8-3: Selecting the type of a card. .. 221

Figure 8-4: Importing the OpenID identity information card created by PIP. .. 222

Figure 8-5: Information about the new OpenID card. 223

Figure 8-6: Certificate information about the PIP OpenID card........................ 224

Figure 8-7: Privacy statement attached to the OpenID card. 225

Figure 8-8: Detailed information about the OpenID card. 226

Figure 8-9: CardSpace applet showing two cards from Verisign PIP (rrpip and

openidbook). ... 227

Figure 8-10: CardSpace popup window when logging into a web site. 228

Figure 8-11: Parameters requested by the CardSpace enabled web site. 229

Figure 8-12: Creating a new CardSpace card on PIP web site. 230

 Page 13 of 247

Figure 8-13: Creating a new CardSpace card on PIP web site. 231

 Page 14 of 247

 Page 15 of 247

Preface and Acknowledgements

This book provides discussion around OpenID, authentication, and authorization and use

of OpenID in the enterprise. The objective of writing this book is to spread the OpenID

awareness and help new comers to the OpenID world understand it quickly. Although

OpenID is becoming more popular, but its potential has not yet been used in the

corporate environment. This book provides some use-case scenarios for OpenID in the

corporate environment.

I have spent almost a year by now to complete this book. I know there are many topics

that still need to be added to this book. I have excluded some of these topics just because

they are not mature enough.

There are other topics that are introduced very briefly and need more explanation. Again,

as they become more mature and relevant, more description will be added to the future

editions.

Target Audience

I would also like to emphasize that the target audience of this book is beginner to mid-

level OpenID users and web site developers. It is not intended for those who already have

an in-depth knowledge and expertise in OpenID or identity management in general.

While reading this book, please keep this thing in mind as some of the material may seem

to be too basic for some folks.

Acknowledgements

I am thankful to all of the following who helped in the preparation of manuscript for this

book.

• Steve Kerns helped in proof reading as well as gave many suggestions.

• Todd Sharer gave many useful suggestions and I am thankful to Todd for his

encouragement and his help in making this manuscript better.

 Page 16 of 247

• Ryan Fitzpatrick from LiveJournal gave permission to add screenshots from

LiveJournal.

• Gary Krall from Verisign Labs gave permission to add screenshots from Verisign

PIP web site.

• David Recordon provided use case scenario for OpenID in the enterprise.

I am thankful to all other friends and well-wishers for their encouragement and useful

suggestions. Above all, I am thankful to all who contributed to OpenID to make it useful

for community.

Free Electronic Books Initiative

I have started an initiative for providing free books in the PDF form. There are significant

expenses in creating books and making them available over the Internet. You can support

this effort by advertising your business in these books with as much money as you can.

You may be a big business or a single person consulting company, everyone is welcomed

here. It is a good way to reach your target audience.

Questions, Comments, Criticism, Appreciations

Please contact me at my email address rafeeq.rehman@gmail.com for any questions or

comments or provide any feedback that can be helpful in the next version of this book. All

and any critique is welcomed.

Rafeeq Ur Rehman

Columbus, OH
December 25, 2007
http://www.rafeeqrehman.com

 Page 17 of 247

Chapter One

1 Introduction to

OpenID

Identity management has emerged as one of the important fields in information

technology, especially information security. Identity management is a primary

mechanism for access control. Every user who needs access to banking account,

eCommerce web sites, or a company resource needs an identity for appropriate

access controls.

There are many ways to create and manage digital identities. Typically, identities

are managed either at the operating system level or at the application level

although there are many other places to manage identities. Three most

John
Highlight

 Page 18 of 247

commonly used operating systems environments are: Unix/Linux, Microsoft

Windows, and Mainframe.

• In UNIX/Linux, identity management is done using LDAP, NIS, RADIUS,

Kerberos, and a number of other mechanisms.

• In the Microsoft world, Active Directory (AD) is the most commonly used

mechanism.

• There are multiple mechanisms for identity management in mainframe

systems like RACF (Resource Access Control Facility).

In addition to operating systems based identity management solutions, a number

of commercial and open source products are also available for this purpose. The

products provide facilities to manage user identities across multiple platforms

and services such as single sign on (SSO), cross company authentication (CCA),

etc. Companies like RSA, Novell, Sun, and others provide commercial products

for sophisticated identity management across multiple platforms.

Most of the above mentioned identity management methods are used in two

different ways, both for front-end user authentication and authorization as well

as for back-end systems. Typically these systems work very well in a closed

environment where all applications and systems are managed by a single

company. With the popularity of web-based systems over the internet, common

users have their accounts with several web sites and this is where the problem

starts. Now a user has to create identities for all of the web sites and remember

username and passwords1. Obviously, this has created a number of issues not

only for users but from security perspective as well.

1 Usually username and password are used for verifying identity (authentication).
However, there are many other ways that don’t involve username and passwords.

 Page 19 of 247

For a user having multiple accounts at different web sites, a common way of

identity management from the “user perspective” is needed to overcome different

problems. The most common problem faced by a user of the Internet is: how to

effectively manage multiple identities at many web sites that a user has to

interact with.

OpenID is an open protocol that enables a person to use a URL as an identity and

use the same identity (the URL) at multiple web sites that support OpenID. Web-

enabled applications can use the identity URL for authentication, authorization,

and other purposes. It is a relatively new concept which puts the control of the

identity into the hands of its owner, the end user. The owner of the identity can

decide, and has control over, which information should be presented to an

application or web site for authentication purpose. Among other things, OpenID

enables owners to:

• Login to web-enabled applications and web sites without ever entering

any username and password information.

• Enable web sites to request information from a user; and empowering the

user to choose which information is to be sent to a web site during

authentication/authorization process.

• Chose which sets of information (also known as profiles or cards) to be

sent to different web sites, based upon need and risk level.

• Allows implementation of graded and risk-based authorization.

• Implement an alternate to single sign on (SSO) for multiple applications

within an organization.

• Implement an alternate mechanism for cross-company authentication

(CCA) for affiliates and business partners.

John
Highlight

John
Highlight

 Page 20 of 247

• Integrate applications into the OpenID system using a simple and elegant

mechanism.

• Lower cost of implementation and maintenance of an identity

management solution.

In this book, you will look into many of these features in detail. The objective is to

give you (the reader) enough information by the end of this book to:

• Understand OpenID concepts and the other systems/protocols that work

with OpenID.

• Understand the OpenID protocol in detail and the different types of

messages that are used to convey information from one component to

another component in the OpenID system.

• Implement OpenID enabled web applications.

• Run an OpenID server.

• Implement Cross Company Authentication (CCA) using OpenID

• OpenID interoperability with other systems like Microsoft CardSpace.

This chapter will help new users of OpenID understand how the system works at

a very high level. Instead of starting with all of the theory behind the OpenID

protocols and technical descriptions, I have chosen to provide a practical example

first. This example creates a new OpenID and then uses it on multiple web sites

to help a new user understand how the process works. The next chapters will

explain the technical details of the OpenID protocol and how to use it in real-life

scenarios.

 Page 21 of 247

1.1 A Five Minute Tour of OpenID

OpenID is a system that enables you to use a URL as your identification and login

to any OpenID-enabled web site using that URL. You don’t need to create user

IDs and passwords on individual web sites. The benefit: As a user of the OpenID

system, you don’t have to remember the usernames and passwords for individual

web sites.

Before going into detail of OpenID protocol, I would like to give you short demo

of how OpenID system works. In this demo, you will create an OpenID URL for

yourself and then login to OpenID enabled web sites, also called Consumer or

Relying Party or RP using this URL as your identity. A detailed discussion will

follow in next chapters but for right now, just try to get a feel of how the system

works on a user level.

For the purpose of this demonstration, I selected Verisign Personal Identity

Provider or PIP as the Identity Provider (The place where you create the Identity

URL) and LiveJournal as the Consumer or Relying Party (the web site where you

use your OpenID Identity URL to login)2. It should be noted that the objective is

not to promote a particular vendor. There are many open source

implementations of OpenID protocol and you can choose any of those

implementations. Some examples in this book use these open source

implementations and you will get references to these implementations at

multiple places in this book. You can also see a list of a number of open source

implementations on the http://openid.net web site.

The following sections provide a step-by-step approach for creating an ID

(Identity URL) and then using it to login to a web site. For some readers, this may

2 Thanks to Verisign and LiveJournal for the permission to use screenshots from their
web sites.

John
Highlight

John
Highlight

John
Highlight

 Page 22 of 247

seem to be very simplistic. However, this section will give a head-start to new

comers in the OpenID world.

1.1.1 Creating an Account with Verisign PIP

We will use Verisign Personal Identity Provider or PIP and create an ID. PIP is a

service that allows you to create an OpenID identity URL for free (at least for

now). You will be pleasantly surprised how easy it is to create a new Identity

URL3 using PIP. To do so, go to the PIP web site http://pip.verisignlabs.com and

you will see a web page similar to the one shown in Figure 1-1. Note that at the

time of this writing, the web site is still in beta phase of development. So the web

pages may have a different look and feel but the process of creating a new ID and

managing it should not change drastically. Also, PIP has a very intuitive user

interface and you will not find it difficult to explore different areas of the web site.

3 Other web sites and identity providers may have slightly different processes for creating
new IDs.

John
Highlight

 Page 23 of 247

Figure 1-1: Verisign PIP web site home page

The process of creating a new identity is very simple and takes only few minutes.

In Figure 1-1, click on the “Get Started Now” link and you will see the following

screen in your browser where you will create your account.

 Page 24 of 247

Figure 1-2: Creating a new account using Verisign PIP web site

In Figure 1-2, you need to enter required fields marked with asterisk. After

entering data into these fields, you enter the CAPTCHA4 code in the image which

is used to distinguish a real person from a machine. This simple process creates

your account. Your account provides you the URL that acts as your OpenID

4 CAPTCHA (jumbled characters in an image) is used to stop scripting attacks on a web
site. CAPTCHA stands for “Completely Automated Public Turing test to tell Computers
and Humans Apart”.

 Page 25 of 247

identity and you will use this URL to login to different web sites as explained

next.

You will receive an email with a link to activate your account. This is necessary to

verify your email address. Using the link in this email, you will activate your

account. Once activated, you can login to the PIP web site and create your profile.

Creating a profile is not necessary, although recommended. In some cases, the

profile may be required but we will talk about that later. Note that this account is

the only place where you will have a username and password to manage your

OpenID identity. On other web sites, you will just use your OpenID URL without

any username and password and without creating a unique user ID for each web

site.

OpenID is a three-party system consisting of the user (you and your browser), the

identity provider (Verisign PIP), and the relying party (the web site where you

login using your identity). If you keep this in mind, it would be easy to

understand the whole system.

For the purpose of this demo, we have created a login name rrpip which you can

use to login to PIP web site and set up profile. Once you login to the PIP web site,

you will see your Identity URL which is rrpip.pip.verisignlabs.com. Now you can

make different settings to your account by clicking on “My Account” link. When

you click on this link, you will see something like shown in Figure 1-3.

Once again and just to clarify, the login name for the PIP web site (Identity

Provider) is rrpip whereas your OpenID identity URL is

rrpip.pip.verisignlabs.com. When you login to PIP to manage your profile, you

will use username rrpip. But when you go to other web sites that support

OpenID, you will use rrpip.pip.verisignlabs.com to login.

After login to PIP, not only you can use your OpenID identity, but also create

credentials using Verisign Identity Protection (VIP) as well as create Microsoft

CardSpace card to associate with the OpenID URL. We are leaving discussion on

John
Highlight

John
Highlight

 Page 26 of 247

these two features (CardSpace Cards and Verisign VIP) for a later stage and

concentrate only on OpenID URL for the time being. The main thing to

remember is that Verisign PIP now provided integration with Microsoft

CardSpace and VIP.

Figure 1-3: PIP account settings

 Page 27 of 247

You will use the identity URL rrpip.pip.verisignlabs.com to login to other web

sites. This URL is created by pre-pending your user ID (rrpip) to

pip.verisignlabs.com. Other Identity Providers may have a different naming

convention and OpenID does not put any restriction on the composition of URL.

Note that your user ID (rrpip) and password is used to login to PIP web site only

(called the Identity Provider or IdP5). You will not need this username/password

to login to other OpenID-enabled web sites (called Consumers or Relying Parties

or RP), where you will use only the URL for login purpose.

Now is the time to test the newly created identity URL. In the next section, we

shall login to LiveJournal web site using OpenID identity URL.

1.1.2 Using PIP ID with LiveJournal Web Site

Now let us test the newly-created OpenID with LiveJournal.com. LiveJournal is

one of many OpenID-enabled web sites that accept OpenID from other OpenID

Identity Providers. First of all, go to www.livejournal.com and instead of creating

a new account, find a link that shows “Login with OpenID” and click on it. You

can also go directly to http://www.livejournal.com/openid/ link to test your PIP

OpenID. You will see something like Figure 1-4 when you go to this web site6.

5 Identity Provider is also called as OpenID Provider or simply OP.

6 Other OpenID-enabled web sites will have similar text boxes for using with OpenID.

 Page 28 of 247

Figure 1-4: LiveJournal login page

Note that instead of entering a username and password, you will enter your

OpenID URL as shown in this figure (towards bottom part) and then click on the

Login button. The LiveJournal web site will figure out (using some background

processing) that it needs your credentials from pip.verisignlabs.com and will

redirect your browser to the PIP web site. That web site (pip.verisignlabs.com)

will ask you to enter your username and password to ensure only you can access

and authorize the use of your OpenID Identity7. Once you do that, a new PIP

screen will appear that allows you to select one of the following options:

• Opt for one time authentication to LiveJournal

• Allow authentication forever

7 If you are already logged in to pip.verisignlabs.com in another browser window or a
browser tab, you may not be asked to login and you will directly go to the next step.

 Page 29 of 247

• Specify an end- time when you will be asked to re-authenticate

These options, in addition to some other options are shown in Figure 1-5. You

will select one of these options and then click on “Allow” button.

Figure 1-5: Authorization and trust request

In Figure 1-5, just keep the default values and allow authorization for using your

ID with LiveJournal web site only once (the first option under Authorization

Request). For this purpose, just click on the “Allow” button towards the bottom of

this screen. After you click the “Allow” button, some other background processing

will occur behind the scene and you will be redirected back to LiveJournal web

site where you will be logged in using your OpenID rrpip.pip.verisignlabs.com

which is shown in the next figure8.

8 Note that if you select second or third option in Figure 1-5, you will not see this step
altogether for future logins to LiveJournal.com web site and everything will happen
behind the scenes for you.

 Page 30 of 247

Figure 1-6: LiveJournal home page after login using OpenID

Congratulations; you are now logged into the LiveJournal web site. Note that the

LiveJournal web page shows that you are logged in as rrpip.pip.verisignlabs.com

(on top left corner of the Figure 1-6).

Depending upon how the Consumer web site is configured and what parameters

your Identity Provider (PIP in this case) supplies to the Consumer web site, the

Consumer web site may ask you some additional parameters. However, you

would have the control of which parameters you want to send to the Consumer

web site.

1.1.3 Using the OpenID to Login to Multiple Web Sites

Now that you have your PIP OpenID identity URL created, you can use it to login

to any other web site that supports OpenID (in addition to LiveJournal).

Following is a very short list of some other web sites that support OpenID. Try

your newly created ID to logon to these sites.

• http://openid.net/wiki/

 Page 31 of 247

• http://www.lifewiki.net

• http://www.zooomr.com

So now you know that with OpenID URL, you can go to any web site that

supports OpenID and that you don’t need to create (and remember!) usernames

and passwords on each and every web site. Among others, this is one of the major

advantages of using OpenID.

There are other systems in the market that provide similar functionality and we

will consider some of these systems at a later stage in this book. OpenID is a true

open system which makes it more attractive for use. Additionally some of these

other systems can inter-operate with OpenID, and we will look into

interoperability issues later on.

1.2 So What Happened Behind the Scenes?

When you login to a web site using OpenID identity URL, many things happen

behind the scenes. While we will get back to this in detail in later chapters, here is

a short description.

First of all, you go to the Consumer web site and enter your OpenID URL and

click on login button. Then the Consumer web site (in our example the

LiveJournal) communicates to the Identity Provider (in our example

pip.verisignlabs.com) using various methods and exchanges messages in a

defined format. These methods depend upon how intelligent the Consumer web

site is. Once the Consumer web site has received a confirmation from the Identity

Provider about the validity of the OpenID URL, it allows the user to login. If this

is the first time a person is logging in to the Consumer web site, the web site may

ask for some additional information to create a user profile and authorization

parameters.

John
Highlight

John
Highlight

 Page 32 of 247

There are two basic methods or modes of communication between the Consumer

and the Identity Provider depending upon how consumer is configured:

• Dumb mode, in which the Consumer does not maintain the state of the

connection between the Consumer and the Identity Provider and has to go

through more steps to authenticate a user. In this scenario, there are more

HTTP request and response messages among the Consumer, the Identity

Provider, and the User Agent (browser).

• Smart mode, in which the consumer maintains the state of connection

which helps in reducing HTTP traffic for the authentication purposes.

Sometimes this is also referred to as store mode. In this mode, the

Consumer and Identity Provider maintain/store a shared key for

encryption.

In both modes, the Identity Provider and the Consumer communicate using a

shared secret to ensure confidentiality and integrity of the data being exchanged.

When you enter your OpenID URL to login to a web site, depending upon which

mode is used, the web site contacts the Identity Provider via browser redirect, as

well as direct communication between the Consumer web site and the Identity

Provider. The Identity Provider then ensures that it is presenting the correct

credential and it may ask you to authenticate (enter username and password).

The OpenID does not care how the Identity Provider ensures that you are the

same person who you claim to be. This means that different Identity Providers

can use different mechanisms for this purpose. In the next chapters, we will

discuss some of these mechanisms.

In the following section, you will see some additional features provided by PIP.

Other Identity Providers may provide these or similar features in some other

ways.

John
Highlight

John
Highlight

John
Highlight

John
Highlight

 Page 33 of 247

1.3 Entering User Setting

When you use PIP, you can create your profile settings using “My Information”

link on the web site. Figure 1-7 shows the list of fields under your profile. You can

click on the “Edit” link in front of each category to make changes in each data

field.

Figure 1-7: PIP Profile Categories

The “My Activities” links shows log entries and tells you about the usage of your

account and the web sites that you have logged in to while using your OpenID.

This is shown in Figure 1-8.

 Page 34 of 247

Figure 1-8: PIP activity log

This activity log is helpful in diagnosing some problems if you are not able to

login to a particular web site for some reason. It also enables you to audit the

usage of your identity URL.

1.4 Other Identity Providers

Verisign PIP is one of many OpenID providers to choose from. You can also run

your own Identity Provider web site and there are a number of libraries available

for free. Please go to http://openid.net/wiki/index.php/OpenIDServers web site

where you can find a list of OpenID providers and many of them provide their

services for free.

Later in this book, you would also learn how to install and run your own Identity

Provider in detail.

1.5 OpenID Identity URL Composition

There is no restriction on the type of URL that you can use as OpenID Identifier.

Typically, it is a combination of a base URL and the username assigned to you by

 Page 35 of 247

the Identity Provider. For example, if the identity provider is

“idp.conformix.com” and you are assigned an ID “boota”, the Identity URL may

be any one of the following (depending upon the choice of Identity Provider):

• http://idp.conformix.com/boota

• http://boota.idp.conformix.com

• http://idp.conformix.com/?user=boota

These are just few examples of how a URL can be formed. However, as

mentioned earlier, there is no restriction on the composition of the Identity URL.

If you are running your own identity provider, the only thing to remember about

the OpenID URL is that it should be consistent, user friendly, and easy to

remember. Depending upon the composition of the identity URL, there may be

some implications related to domain name server (DNS). If you are not managing

your own DNS, then it is better to consult the DNS administrator before selecting

the URL composition.

1.6 Chapter Summary

The purpose of the first chapter was to get a new user started with OpenID. The

focus was to give the reader an introduction about how OpenID works at a very

high level and without going into technical detail. In this chapter you created

your own OpenID identifier and then used it with an OpenID enabled web site.

You have also learned some basic terminology about the OpenID system

including the following:

• The OpenID identity URL is also called an Identifier.

• The OpenID services provider is also called Identity Provider.

 Page 36 of 247

• The web site that allows you to login using OpenID URL is also called a

Consumer or Relying Party.

• Communication between Identity Provider and the Consumer occurs in

one of the two modes: either smart mode (also known as store mode) or

dumb mode.

• OpenID puts no restriction on the composition of identity URL.

In next chapters, many exciting things about OpenID will be presented.

1.7 References

For more information, you can refer to the following:

• Main OpenID web site at http://openid.net

• Verisign PIP http://pip.verisignlabs.com

• LiveJournal http://livejournal.com

• Web site for this Book at http://www.openidbook.com

• OpenID presentation at http://openidbook.com/presentations/COLUG-

OpenID.pdf

• OpenID Blog at http://openid.blogspot.com

• Some OpenID providers at

http://openid.net/wiki/index.php/OpenIDServers

 Page 37 of 247

Chapter Two

2 Authentication and

Authorization

Authentication is used to establish someone’s identity and authorization is used

to grant or deny access to a resource after authentication. Traditionally, in web-

based applications, authentication and authorization are very system-centric.

However, authentication and authorization are moving towards more user-

centric and risk-based methods. The objectives of user-centric methods of

authentication and authorization are:

• Give the user control over which security tokens are sent to a web site for

authentication and authorization.

 Page 38 of 247

• Allow web sites to request tokens or additional parameters based upon

risk level of information being accessed.

• Allow identity providers9 to issue digital identities instead of just

username and password. Digital identities may contain different sets of

tokens depending upon needs and circumstances.

• Simplify the authentication process for end users.

To meet these objectives, different types of systems are being developed. OpenID

is one of the leading efforts in the open source arena.

This is a short chapter to provide a very basic discussion around authentication

and authorization. It will help to clarify basic concepts about different methods

used for authentication and authorization. It will also show issues facing the

industry and problems with these methods. You will notice that none of the

available methods provides sufficient security and a combination of multiple

methods is needed for adequate security and reliability.

Once you have read this chapter, it will make more sense as to why OpenID exists

in the first place and what problems it is going to solve.

2.1 What is An Identity?

This is not a new question: it has been there for centuries, way before computers

were invented. Identity is something that is used to distinguish something or

someone from others. If you think about the identity of human beings, is it a

person’s name? Probably not, because somewhere in this world, there may be

many other people with the same name as yours. Is it someone’s social security

9 Identity providers are external companies or internal IT departments that issue an
identity to a user and manage authentication mechanism.

 Page 39 of 247

number, color of eyes, the language a person speak, the place you live, or

something else?

In most of the cases, identity is a combination of factors mentioned above. In this

chapter you will take a look into how identity can be established and managed in

a better way. Some additional discussions about identity will be presented later in

this book.

Please note that this chapter is not about philosophical discussion about identity

and what it means. It is just an introduction to identity so that the discussions

that follow make some sense.

2.2 Authentication and Authorization

The origin of authentication is from the Greek which has the notion of authentic

or genuine. Authentication is the act or process of establishing authenticity of

something or someone10. The dictionary meaning for authentication is to

establish something (or someone) as a valid entity.

In terms of computer security, authentication is a process whereby an entity (a

user, an application, a device, etc) establishes that it is what it claims to be. The

most commonly used authentication method is the username and a password.

Typically a user will be issued a username and password after validating identity

of the user. Once issued, the username and password can then be used for the

purpose of authentication. There are many other authentication methods which

will be introduced shortly.

10 http://en.wikipedia.org/wiki/Authentication

 Page 40 of 247

Authorization is the process that typically comes after authentication and is used

to grant or deny access to a computing resource11. So once a person or device has

been authenticated, authorization enables access control to a resource for only

those who have a legitimate need to gain access.

For example, an employee badge may be needed to establish identity and get

inside a company building (authentication). However, only few employees may

be allowed to go inside the check printing room (authorization).

Note that the authentication and authorization go hand-in-hand. Authorization

to different resources may be granted depending upon a multitude of factors

including:

• The sensitivity and importance of the resource plays an important role.

For example, only few people may be granted access to a company’s

financial information.

• The authentication method, which means that a person authenticating

with username/password plus a biometric device may get higher level of

access compared to a person authenticating only with username and

password.

• Depending upon day and time, you may get different level of access,

especially in places like financial institutions.

• Location of party that needs access to the resource is also an important

factor. For example, a connection originating from a hostile country may

have very few access rights to a resource. Some financial companies

enforce users to provide additional information at the time of

authorization if connection is originating from outside the United States.

11 http://en.wikipedia.org/wiki/Authorization

 Page 41 of 247

Authentication and authorization are placed under a broad information

technology category, identity management, which is becoming a very important

part of overall IT strategy. OpenID simplifies a number of problems in some

areas of identity management.

2.3 Username and Password

Username and password are typically two strings composed of numbers,

alphabets, or special characters. You should remember the following about

usernames and passwords.

• Sometimes a username is also known as User ID, Login ID, or Login

Name or simply an ID.

• A username is typically six to eight characters long but different

companies will have their own standards for the length of username.

• A username is not usually someone’s real name and it can be any string of

character and/or numbers.

• A password should be a complex set of uppercase and lowercase

characters, numbers, and special characters (like question mark).

• Company policies may be enforced to require complex passwords. For

example, most of the computer systems allow a system administrator

enforce a policy thereby not allowing dictionary words as passwords.

While the username stays the same, it is recommended to change the password

on periodic basis. Some systems will force users to change their password after a

certain period of time or after a certain number of uses.

 Page 42 of 247

Typically, you will have unique/distinct username and password for all systems

and web sites you login to. As a result you have to maintain a large number of

usernames and passwords.

OpenID solves this problem by creating a unique URL for you that you can use to

login to different systems and web sites. So in a way, this is a replacement of

traditional username and password and simplifies end-user’s life to a large

extent. However, OpenID does many other things as well which will be covered

later in this book.

2.4 Authentication Methods

Authentication to computer systems is performed using many different methods.

Depending upon a particular situation, sensitivity of the data or system, one

method or a combination of methods may be used for authentication. This

section introduces some of the commonly used authentication methods. Please

note that there may be other authentication methods that are not covered here.

2.4.1 Password Authentication

Password based authentication is the most commonly used method in all types of

systems and applications. Password authentication has been used to log on to

operating systems, client-server applications, desktop applications, as well as

web-based applications. For most people, when you mention authentication,

username and password is the first thing that comes to mind.

Password-based authentication has served its purpose very well over time.

However, a number of security issues are well established with password-based

authentication. The most common issue is the sheer number of

username/password combinations that a person has to remember. Most of the

computer users have a number of accounts at their workplace, their home, their

financial institutions, insurance providers, email accounts, etc. It has become

 Page 43 of 247

almost impossible to remember that many passwords. As a result, typical users

will:

• Write these passwords somewhere to avoid forgetting these passwords

• Use the same password for all accounts

Both situations are not good from security perspective. If you write down your

passwords on a paper, it is inevitable that someone will see that paper you are

hiding in your drawer or the sticky note on the back of your display monitor. On

the other hand, if you use the same password for all of your accounts, all of your

accounts will be compromised if that password is disclosed. Since the same

password is stored at many different places, the probability of its disclosure

increases with the number of places it is stored at.

Also, over time, malicious attackers have found many ways to get others’

passwords and password cracking tools have become very sophisticated.

Phishing12 attacks have revealed weaknesses in using passwords as a single

means of authentication.

2.4.2 PIN Authentication

PIN or Personal Identification Number is a string of numbers or a combination of

numbers and letters. Typically a PIN is smaller than a password. PINs are used in

many scenarios like ATM cards, authentication in telephone based systems, also

known as Interactive Voice Response (IVR) and so on. PINs are also used in

handheld devices where it is impractical to use long passwords.

PINs are considered to be a weak authentication mechanism and can be easily

cracked by exhaustive search. Use of PIN is a reasonable authentication

12 See Wikipedia entry for phishing at http://en.wikipedia.org/wiki/Phishing

 Page 44 of 247

mechanism as long as it is used in combination with something that you have or

something that you know, also known as two-factor authentication.

2.4.3 One Time Password (OTP) Authentication

OTP is used only once to avoid problems with compromised passwords. There are

a number of ways to generate one time passwords. One of these methods is the

use of electronic tokens that you can carry with your key chain.

One time password generation tokens have been in use for quite some time.

These are usually small devices that can be carried as part of your key ring. These

devices generate random number strings, either on specified time intervals or

when a user presses a button on the device itself. The user would then use the

random number to authenticate to a system. Typically this random number is

used in combination with a username and password.

There are some problems with these tokes as well. Different vendors have their

proprietary systems that seldom work with each other. Other than

interoperability issues, a person has to carry multiple tokens if this method is

used for different systems. This makes the OTP mechanism difficult to use in

current environment due to the fact that the typical user would need to carry

multiple tokens (how many tokens are you willing to carry?). The OTP system has

worked very well where a single token was used, usually to access company

information or sensitive data. Also, the use of OTP does not eliminate the use of

passwords which should be used in conjunction with OTP.

2.4.4 Smart Card Authentication

Smart cards are usually scanned or plugged into a system for authentication

purposes. Smart cards are being used for physical security as well as IT security.

Typically these cards are small enough (size of a credit card) so that people can

carry them conveniently.

 Page 45 of 247

Many times smart cards are used in combination with a PIN. Smart cards have

magnetic strips and/or embedded chips that are able to do a number of things.

There are issues of interoperability with smart cards as well.

2.4.5 Biometric Authentication

In biometric authentication systems, finger prints, eye retina scans, or some

other body identification mechanism is used. Biometric systems are not very

scalable and also have issues with reliability in addition to being expensive to

install and maintain.

Biometric methods, if not used properly, may also cause additional risks to

personal privacy.

In a typical biometric system, a person will be asked to enter a pin in addition to

biometric authentication. Some laptops also use biometric authentication without

entering a pin such that a user does not need to login to the laptop. Overall,

biometric systems should be used with care considering all risks and benefits and

cost of ownership.

2.4.6 Certificate Based Authentication

Digital certificates13 (also known as X.509 certificates) are also used as

authentication mechanisms in many scenarios. SSH (Secure Shell) is one

example where certificates are used frequently for the authentication purpose.

Many companies also use certificates as second factor for remote access, such as

VPN. Certificate-based authentication is considered very secure if the proper

infrastructure for certificate management is available. However, the

13 Digital certificates are used for many purposed in addition to authentication. Some of
these include SSL (Secure Socket Layer) for secure web sites, sending and receiving
secure email, digital signatures, etc. Please see additional information in Glossary section
of this book.

 Page 46 of 247

infrastructure may be cost prohibitive for many companies. Fortunately there are

certificate provider companies that provide services to manage digital certificates.

Digital certificates can be revoked when an employee leaves a company or if a

certificate is lost or stolen. Digital certificates also have an expiration mechanism.

Any system that relies on digital certificates for authentication purposes is

usually able to check certificate validity, expiration, or revocation. The certificate

providers usually maintain a list, called Certification Revocation List (CRL), that

keeps track of all revoked certificates.

2.4.7 USB Devices

Some USB devices carry authentication information, like an X.509 certificate.

USB devices are easy to carry compared to smart cards and can also be used for

carrying files with you. Another advantage is that the same USB device may be

used to carry multiple credentials.

Like other technologies, there are many risks associated with USB devices. The

biggest risk is that people lose USB devices very frequently and start using these

devices for transferring files from one place to another. This poses a significant

risk for a certificate being stolen or compromised.

2.5 Weak and Strong Authentication

Different people define weak and strong authentication differently. Most

commonly understood definition is that if only username and password

combinations are used to authenticate to a system, it is called weak

authentication. However, if you use a combination of different methods to

authenticate to a system, it is called a strong authentication method. Use of just a

username and password is weak because it can be compromised relatively easily

compared to any strong authentication method.

 Page 47 of 247

For strong authentication, you use multiple methods or “factors”. For example,

OTP token is a factor and password is another factor. Factors are divided into

three broad categories.

• Something you know; the example is a username and password. In

other cases, many web sites may ask you security questions, like the name

of your childhood pet.

• Something you have; the example is a USB device, OTP token or a

smart card.

• Something you are; the example is finger print, eye retina or the way

you walk (yes!).

Strong authentication uses a combination of factors from these categories. Note

that for authentication to be strong, factors should belong to more than one

category mentioned above.

2.5.1 Two – Factor Authentication

When you use two factors in combination to authenticate to a system, it is called

a two-factor authentication. Each of the two factors should result in a success to

authenticate a person. For example, if you are using username/password and

OTP token, both the username/password and OTP token string should match for

successful authentication. In this case even if someone steals your password, that

person will not be able to login unless he/she gets hold of your token device as

well.

Two-factor authentication is highly recommended for granting access to

financial, medical, and customer data.

Also note that using the same factor twice does not make it two-factor

authentication. As an example, using two passwords does not make it two factor

authentication. For two-factor authentication, you have to use factors from two of

 Page 48 of 247

the three categories listed earlier in this chapter (something you know, have, or

are).

2.6 Single Sign-On (SSO) and Federated Identities

Sometimes people don’t agree on one definition for single sign-on or SSO. One

definition is a mechanism whereby you have to login once to get access to

multiple resources. So for example, there may be many applications in a

company’s network. However, when you login to one application and then move

to the next one, you don’t have to authenticate again. Your credentials are handed

over to all applications that take part in an SSO system and all of this happens in

the background. Depending upon the background mechanism used for SSO,

some of the mechanisms are not considered as true SSO. In those situations, it is

also called simplified sign on instead of a true SSO.

SSO solves a number of problems with usernames and passwords. It eliminates

the need for multiple username and passwords which are difficult to remember.

With SSO, you can implement better controls for password strength so that users

must use difficult-to-guess passwords. However, SSO is like the keys to kingdom,

and if you lose your username and password, someone can get access to all

applications and systems that you have access to.

It is more prudent to use SSO with multi-factor authentication so that the keys to

the kingdom scenario becomes less likely and risk associated with SSO is

reduced.

Many systems are developed for SSO by different companies. Kerberos is a three-

party system that works on the basis of credentials or tickets. Initially when a

user logs into the system, the user is granted a ticket. When the same user needs

access to another resource on the network, another ticket is generated using the

existing ticket. This book is not intended for Kerberos description, however, you

can find more information about Kerberos at http://web.mit.edu/Kerberos/.

 Page 49 of 247

Typically SSO is used within a company and becomes useless when

authentication is needed across different companies. This is because a user may

have one username and password for accounts in one company and another set of

username and password for another company. Federated Identity is another

mechanism that allows authentication across companies but requires a heavy

infrastructure as well as a trust factor. For example, unless your company trusts

the ID administration of the other companies, it would be risky to rely on

credentials provided by those companies.

A number of systems have been developed for federation. SAML (Security Access

Markup Language) is one of those systems. OpenID can also be used for SSO and

federation as you will learn later in this book.

2.7 Identity Management Dilemma

Over the last two decades, computer use has become ubiquitous in daily life.

Things that were done on paper, or by postal service, are now done electronically

with the help of computer. People manage their bank accounts, pay bills, do

shopping, and many other things on daily basis with the help of computers.

However, authentication is needed for all such activities. As a result, there is a

real crisis and challenge for the computer industry: How to manage IDs?

The problem is how to minimize the number of username and passwords. Ideally

only one username and password per person would provide ease of use. Single

Sign On (SSO) mechanisms have been used successfully inside companies to

reduce number of username and passwords. However, there are practical

problems with using SSO across different companies. Federated Identity is

considered another solution for inter-company authentication but it needs a trust

mechanism which is difficult to agree-upon as mentioned earlier.

So the question is what other mechanisms can be used to perform this necessary

function better? Fortunately a number of solutions have been proposed to

 Page 50 of 247

overcome the many problems that we are facing today. We will look at some of

those in next sections.

2.8 Directory Services

Directory services are used to store user credentials. User credentials may be

username/password, as well as many other types of information that may be

helpful in authentication and authorization process. This additional information

is often called as attributes. Directory services consist of two very basic

components:

• A storage mechanism where all credentials are stored in a secure and

structured manner

• A mechanism to enable access to the storage, usually in the form of a well-

defined protocol

You also need programs and utilities to manage a directory as well as servers and

client components that implement directory access protocol.

There are a number of directory services available today. The most widely used

directory services are:

• The Light Weight Directory Access Protocol (LDAP) which has been

standardized by the Internet Engineering Task Force14 (IETF). Both open

source as well as commercial products are available that implement

LDAP. A number of standard documents, known as RFCs (Request For

Comment) are available from IETF that define LDAP.

14 http://www.ietf.org

 Page 51 of 247

• Microsoft Active Directory (AD) is the primary directory on Microsoft

Windows systems. AD can interoperate with LDAP, which is good news!

• The Oracle Internet Directory (OID) also implements LDAP and works

with other LDAP systems.

• CICS is extensively used in the mainframe world.

The computer industry has become more mature in the directory services area

and interoperability. Most of the directory services used today use LDAP in some

fashion.

2.9 Risk Based Authentication and Authorization

Risk based authentication and authorization is a relatively new concept in the

authentication and authorization arena. Basically, the concept is to have different

levels of authentication/authorization which depend upon the risk level

associated with the resources that are being accessed. For example, a weak

authentication may be fine for checking the amount of payment due on your

monthly cable television bill. However, a stronger authentication is needed if you

want to make changes to your mailing address. So there may be multiple level of

authorization needed for different types of services. Sometimes it is also being

referred to as graded authentication and graded authorization.

2.10 New Authentication Mechanisms

As you have seen earlier in this chapter, although there are many authentication

mechanisms, all of them have some drawbacks or problems. Many companies, as

well as the open source community have been working very hard to come up with

systems that are sophisticated, solve the current and future problems with

identity management and make computer use easier and less complicated.

John
Highlight

John
Highlight

 Page 52 of 247

One new concept is to have a user-centric authentication and authorization

framework whereby a user can control which information be sent to an entity

(e.g. a web site) for authentication and authorization. At the same time,

depending upon risk level (see Risk Based Authentication above), a new idea is to

allow the relying parties (e.g. web sites) to request information that is necessary

to grant a specific level of access to resources. The following systems are being

introduced to implement frameworks around these ideas.

2.10.1 OpenID

OpenID is a system that allows you to use a URL as your identity for

authentication purposes. You can create your profile with an identity provider.

This profile can be used with any OpenID enabled web site without creating a

username and password for each web site. You have seen a demo of this

mechanism in Chapter One demonstrating how OpenID works. The next chapters

will provide detailed information about the OpenID protocol.

2.10.2 Microsoft Windows CardSpace

Microsoft Windows CardSpace was introduced with Windows Vista and is

available in Windows XP as well. In some literature it is also called Microsoft

InfoCard. It is an effort to allow Windows and web-based applications to use

digital identities provided by any identity provider in a consistent manner. Many

concepts in OpenID and CardSpace are common and we shall explore the

interoperability issues later on. You can integrate OpenID into the Windows

CardSpace to login to even those web sites that use CardSpace.

John
Highlight

John
Highlight

John
Highlight

John
Highlight

 Page 53 of 247

2.10.3 Bandit

The Bandit15 project provides many software components which enable

authentication and authorization, role based access, compliance, and auditing.

2.10.4 Higgins

Higgins16 is another effort to provide users control over their identity information

that is shared with relying parties.

2.10.5 LID

Light-Weight Identity or LID17 is another system that uses URL based identities.

These systems, like OpenID, implement user-centric identification.

2.10.6 Yadis

Yadis provides a mechanism to discover services available at a particular URL.

Yadis is an XML-based simple protocol and enables a Consumer to discover

authentication as well as other services provided by an identity URL. Since a URL

can be used with multiple systems (e.g. LID and OpenID), Yadis is useful to

identify the type of service and identification mechanism.

Typically an OpenID Consumer will use Yadis in the first step of authentication

process to get information about the identity URL. Yadis works over the HTTP

protocol only according to its current specifications. When Yadis client sends a

request, usually an XML document is returned in a format known as eXtensible

Resource Descriptor or XRD. Following is an example of XRD document which

will be used in Chapter 5 where protocols are described in more detail.

15 Bandit project home page: http://www.bandit-project.org/

16 Higgins project home page: http://www.eclipse.org/higgins/

17 LID is available at http://lid.netmesh.org

John
Highlight

John
Highlight

 Page 54 of 247

<?xml version="1.0" encoding="UTF-8"?>

<xrds:XRDS

 xmlns:xrds="xri://$xrds"

 xmlns:openid="http://openid.net/xmlns/1.0"

 xmlns="xri://$xrd*($v*2.0)">

 <XRD>

 <Service>

 <Type>http://openid.net/signon/1.1</Type>

 <Type>http://openid.net/sreg/1.0</Type>

 <URI>http://idp.conformix.com/index.php/serve</ URI>

<openid:Delegate>http://idp.conformix.com/?user=ope nidbook</openid:Delega

te>

 </Service>

 </XRD>

</xrds:XRDS>

Detail about different parts of the Yadis document (like the one shown above) will

be discussed in Chapter 5. For the time being, it is enough to understand that the

<Service> elements define a service. The <Type> element of the XML document

shows a particular version of a service. There may be multiple <Type> elements

in an XRD document and priorities can be set to use a particular version. The

<URI> element shows the actual URL where the client should contact to get a

service.

Figure 2-1 shows a Yadis black-box service which takes a URL as its input and

gives an XML document as output. It is up to the Consumer to interpret the XML

document and use the available services.

 Page 55 of 247

Figure 2-1: Yadis input and output

Yadis is very helpful in providing interoperability among different types of

Identity services as well as setting up high availability environments using

priority numbers.

More information about Yadis is available at http://yadis.org. OpenID also uses

Yadis and this will become clear in next chapters. A typical OpenID client will

make a Yadis call to Identity Provider to determine list of services and then make

a second call for actual authentication request.

2.11 Chapter Summary

This chapter provided basic information about authentication and authorization

and different methods that are currently in use for this purpose. It also

introduced issues facing these methods.

The IT industry is going through a maturity and evolution process. The future of

the authentication and authorization will be more user-centric and risk-based

allowing users to use identities provided by different identity providers in a more

consistent way. The users will also get control over what pieces of information are

shared with the consumers of identities.

In the next chapter, we shall focus on OpenID and how it solves many of the

problems discussed above.

 Page 56 of 247

2.12 References

For more information, you can refer to the following:

• Main OpenID web site http://openid.net

• Verisign PIP http://pip.verisignlabs.com

• OpenID Book http://www.openidbook.com

• OpenID presentation at http://openidbook.com/presentations/COLUG-

OpenID.pdf

• OpenID Blog at http://openid.blogspot.com

• LDAP information at http://www.openldap.org

• Bandit project at http://www.bandit-project.org

• Higgins project at http://www.eclipse.org/higgins/

• OpenSSO at http://opensso.dev.java.net

• Yadis at http://yadis.org

• LID at http://lid.netmesh.org

• Kerberos at http://web.mit.edu/Kerberos/

 Page 57 of 247

Chapter Three

3 OpenID Protocol

and Messages

In Chapter One, you explored the use of OpenID from a very high level

perspective without going into detail of how it works. In the Chapter Two, you

looked at some of the authentication and authorization methods as well as the

advantages and drawbacks of each of these. In this chapter you are going to look

into some of the interworking of the OpenID protocol. Specifically, you will start

with OpenID concepts and terminology. After that you will see the message types

and message flow that will show what is happening in the background.

After going through this chapter, you will be able to understand the OpenID

system in more detail and be ready for the next chapters where you are going to

create your own OpenID server and Consumer applications.

 Page 58 of 247

3.1 OpenID Concepts and Terminology

OpenID is a system that allows a user to use a Uniform Resource Identifier or

URI (like web site URLs) for authentication purposes. This URI is used as the

username or identity for a person18 and is also called as the Identifier. In this

book, we shall be using URI and URL interchangeably in different places.

This section provides introductory information about the OpenID systems and

builds the foundation on which you will be able to understand the information

provided in this and next chapters.

3.1.1 OpenID Definitions

To better understand the discussion in this chapter as well as in the following

chapters, it is important to understand OpenID terminology. We would like to

point out that in some cases, slightly different terms are used for the same thing

in OpenID documentation. While defining terms, I shall point out these

differences and commonalities. Also, OpenID specifications 1.1 and 2.0 have

some slight changes in terminology and this will also be pointed out wherever

applicable.

End User

End User is the real user or a real person who is using the OpenID system to

login to different web sites using his/her credentials stored at the Identity

Provider.

Consumer or Relying Party (RP)

Consumer is the actual web site where you login using OpenID. It is called

Consumer because it consumes the OpenID credentials provided by the Identity

18 http://openid.net/

John
Highlight

 Page 59 of 247

Provider. All web sites that support login using OpenID are Consumers. In

OpenID specification 2.o as well as in some other literature related to ID

administration, a Consumer is also called a Relying Party or RP.

Identifier

Identifier is the URL that identifies digital identity of End User.

Identity Provider or IdP (OP)

Identity Provider or IdP is the host where a user’s credentials are stored. The

OpenID URI points to the identity provider. During the authentication process,

the Consumer will validate an ID by exchanging some messages with the Identity

Provider. Sometimes it is also called as OpenID Server, OpenID Provider or

simply OP.

User Agent

In simple words, User Agent is your browser. A user interacts with the User

Agent directly.

There are some other terms as well but we shall introduce those ones as needed.

The definitions mentioned here are sufficient to start the discussion about the

OpenID protocol and communication flow.

3.1.2 Communication among OpenID System Components

There are three major components in any OpenID system: Consumer, Identity

Provider, and User Agent. These components interact with each other during the

authentication process. Roles for these components are explained next.

• The Consumer, which is the web site where you are trying to login,

interacts with the Identity Provider and the User Agent (the web

browser). An End User will try to login to the Consumer web sites using

OpenID. During the authentication process, the Consumer will send some

 Page 60 of 247

messages to the Identity Provider directly as well as via User Agent with

the help of HTTP redirect messages.

• The Identity Provider is the OpenID server that holds an End User’s

credentials. The Identity Provider will validate the ownership of an

identity URL to the Consumer using two basic mechanisms which we

shall discuss later in this chapter.

• An End User will interact with the Consumer and Identity Provider using

the User Agent. The User Agent is your web browser.

During the authentication process, the browser acts as the middle man between

the Identity Provider and the Consumer web site for some messages. Typically, a

Consumer will interact with the web browser as well as the Identity Provider

during authentication process. However in some cases, the Consumer may use

cached keys to authenticate a user without any direct communication with the

Identity Provider.

Figure 3-1 shows the communication path among these three entities. Here the

assumption is that the Identifier URI also resides on the Identity Provider server.

 Page 61 of 247

Figure 3-1: Communication among different components of the OpenID System with

the URI identifier and the Identity Provider on the same machine.

Note that you can have your Identifier URI pointing to the Identity Provider

machine or a different place. In fact, you can put your Identifier on any machine

you like. Since the URI is your identity, it is important that as an End User you

have control over that URI. If you own your URI, you can use a different OpenID

server and your identity will remain the same.

The Consumer has a mechanism to identify the Identity Provider from the URI,

which we shall discuss shortly. Figure 3-2 shows the communications path when

your URI is located at a different place other than the Identity Provider.

 Page 62 of 247

Figure 3-2: Communication among different components of the OpenID System with

Identifier URI and Identity Provider are on different machines.

As shown in Figure 3-2, only the Consumer will fetch the URI in the OpenID

system and no other machine needs to contact the URI.

Note that it is possible to have your browser machine also acting as the OpenID

Identity Provider. In that scenario, there are only two physical machines taking

part in the communication.

 Page 63 of 247

3.2 Direct and Indirect Communication

There are two basic communications methods among different entities in an

OpenID system: Direct Communication and Indirect Communication.

In the Direct Communication mechanism, two entities directly talk to each other

using the HTTP protocol. The HTTP POST method is used for direct

communication.

With the Indirect Communications, two entities talk to each other via a third

entity. This third entity is typically the web browser. Indirect communication may

happen via HTTP Redirect or via HTML Form redirection.

3.3 OpenID Modes of Operation

OpenID has two major modes of operation: the Dumb mode and the Smart mode.

These modes are based upon how intelligent the Consumer is. In Dumb mode, as

the name implies, the consumer is not that smart and has to perform few

additional steps every time a user logs in. In Smart mode, the Consumer keeps

state information and caches shared keys for future use. In this section, we shall

share more detailed information about how these two modes work.

3.3.1 Dumb Mode Communications Flow

In Dumb mode, the Consumer (relying party) does not maintain the state of the

connection, so any information that was used in a previous login, can’t be used

again. Every time an End User logs in to a Dumb Consumer web site, the same

process is repeated. In a nutshell, the process goes through a number of steps as

explained next. We shall be referring to our example in Chapter One so that you

can correlate your experience with each process step-by-step. Note that in

Chapter One, we had:

• The Identity Provider as pip.verisignlabs.com

 Page 64 of 247

• The Consumer as livejournal.com

Following is the step-by-step authentication and login process where

communication between the Consumer, the User Agent (web browser), and the

Identity Provider takes place. These steps are mapped graphically using Figure 3-

3.

1. You visit the Consumer web site where you want to login. In Chapter One,

the web site was livejournal.com.

2. The web site presents a web page where you enter your identity URL.

Typically, you will enter your Identity URL and click on Login button.

Different web sites may have different types of web pages but the process

will remain the same. In Chapter One, this is the place where you entered

your URL “rrpip.pip.verisignlabs.com”. Note that you don’t need to add

“HTTP://” in the beginning of the URL or any slash character at the end

of the URL. OpenID specification requires that all Consumers should be

intelligent enough to understand a URL in different formats.

3. The Consumer web site (livejournal.com) will clean up the Identifier URL

and fetch the information from its current URL location. This location

may be the same as the Identity Provider or may be a different host. In

Chapter One, the URL location and the Identity Provider are at the same

place (pip.verisignlabs.com). Note that in OpenID specification version 2,

another XML protocol, known as Yadis, can also be used at this stage for

service discovery. Yadis is discussed in more detail later in this chapter

and the next one.

4. After fetching the page, the Consumer (livejournal.com) will then parse it

and determine the location of Identity Provider (OpenID Server). This

information is embedded inside the HTML web page and we shall discuss

the page itself shortly. This parsing process is also called discovery. After

parsing, the Consumer (livejournal.com) will then redirect the web

 Page 65 of 247

browser to the Identity Provider to obtain the assertion information. This

happens using the HTTP GET method. Optionally, the consumer may

establish a connection with the identity provider at this point and

exchange a shared secret for further communication. This is shown with a

dotted line in Figure 3-4 and marked as step 4a.

5. If the end user is not already logged into to Identity Provider, the Identity

Provider may ask the End User to login. This is what happened in our

example in Chapter One. However, it should be noted that this part is

outside the OpenID specifications and it is left to the Identity Provider to

decide how to authenticate the End User. In some circumstances, if you

have already logged into the Identity Provider web site, this part may be

skipped altogether.

6. The Identity Provider (pip.versignlabs.com) will return the assertion

information with its signature to the Consumer (livejournal.com) via

browser redirect. This assertion will represent either an authentication

success or failure. The HTTP GET method is used in this step as well.

Note that this is the Indirect Communication between Identity Provider

and the Consumer.

7. During successful assertion, the Consumer (livejournal.com) will establish

a direct connection with the Identity Provider (pip.verisignlabs.com),

preferably over a secure SSL session. It will request the authentication

information directly from the Identity Provider and compare it with the

assertion information it received via User Agent (web browser). This is to

double check the validity of the assertion in case a User Agent (or a

malicious attacker) is trying to cheat.

8. If there is a match in the previous step, the End User will login to the web

site. Otherwise the login will fail.

 Page 66 of 247

A detailed step-by-step process is shown in Figure 3-3 where you can see all the

communication steps. Detailed protocol level information about OpenID

messages is presented in Chapter 5 where you will see actual HTTP messages. By

then, you will have installed your own Identity Provider and Consumer and then

you may want to use a sniffer to look at the HTTP traffic and analyze the protocol

further.

Figure 3-3: Dumb mode communications

 Page 67 of 247

3.3.2 Smart Mode

The smart mode authentication is similar to the dumb mode authentication with

the exception of step number 7 in Figure 3-3. Now the Consumer already has the

shared secret (from step number 4a) and it can decrypt and verify the assertion

from step 6 and determine if the Identity Provider really signed it. Note that step

4a will happen only once in a while when the Consumer needs to refresh the

cached secret or get it the first time. This is shown in Figure 3-4. The step-by-step

process is as follows:

1. The End User visits the Consumer web site.

2. The web site presents a web page where the user enters identity URL and

clicks on the Submit or Login button.

3. The Consumer web site will clean up the Identifier URL and fetch it from

its current location.

4. After fetching the page, the Consumer parses it and determines the

location of Identity Provider (OpenID Server). After parsing, the

Consumer will redirect the web browser to the Identity Provider to get the

assertion information. Optionally, the Consumer may send an association

request with the Identity Provider and exchange a shared key as shown in

step 4a in Figure 3-4.

5. If the End User is not already logged into to Identity Provider, the Identity

Provider may ask the End User to login.

6. The Identity Provider will return the assertion information with its

signature to the Consumer via browser redirect. This assertion will

represent either an authentication success or failure.

 Page 68 of 247

7. After a successful assertion, the Consumer verifies the assertion using the

cached shared key. If there is a match in the previous step, the End User

will login to the web site. Otherwise login will fail.

Figure 3.4: Smart mode communication flow, during the first time login.

In many cases when you have already established your credentials with the

Identity Provider, it will not prompt you again for login. There are many

techniques that can be used by the Identity Provider to achieve this goal,

including active browser sessions and cookies. In such a scenario, and assuming

that the Consumer has already cached the Identity Provider shared secret, the

 Page 69 of 247

communication will become very simple and the End User will login to the

Consumer web site without any interactive session with the Identity Provider.

This is shown in Figure 3-5. In this case, the steps will be as follows. Note that the

End User will get immediate access to the web site after entering the Identifier

URL.

1. You visit the Consumer web site.

2. The web site presents a web page where you enter your identity URL.

3. The Consumer web site will clean up the Identifier URL and fetch it from

its current location.

4. After fetching the page, the Consumer parses it and determines the

location of the Identity Provider (OpenID Server). After parsing, the

Consumer will then redirect the web browser to the Identity Provider to

obtain the assertion information.

5. The Identity Provider will return the assertion information with its

signature to the Consumer via a browser redirect method. This assertion

will be represented as either an authentication success or failure.

6. After a successful assertion, the Consumer verifies it using the cached

shared key. If there is a match in the previous step, the End User will login

to the web site. Otherwise login will fail.

 Page 70 of 247

Figure 3.5: Smart mode communication flow and the subsequent login where the

Consumer and Identity Provider have already established a shared secret.

Note that in Figure 3-5, the communication with the Identity Provider is

transparent to the user and operations happen behind the scenes via browser

redirects.

 Page 71 of 247

3.3.3 Using Ajax with Dumb and Smart Modes

It is appropriate for a Consumer to use Ajax19 on the login page to make the page

redirection mechanism more transparent to the user. The Ajax page will give an

impression to the End User that authentication is complete without leaving the

web page. Although this is not mandatory, it would definitely improve user

experience.

3.4 OpenID Identity URL Page

We have talked a lot about OpenID Identity URL. Now let us have a short

discussion about what information is present in an OpenID URL page.

First of all, you should have a clear understanding that you can put your OpenID

URL on any web server. You are not required to put it on the Identity Provider

server. You just need to create an HTML document with the specific information

in it and then put it on a web server. The URL to this document will be your

Identifier URL. You can also use an XRI20 (eXtensible Resource Identifier) based

URI but we will explain this at a later stage to keep things simple for the time

being.

The HTML document will have information about the OpenID server in its HEAD

section. As an example, if you are using pip.verisignlabs.com as your Identity

Provider, you will have something like the following in the HEAD section of your

document.

<link rel=“openid.server” href=“https://pip.verisignlabs.com”/>

19 For more information on Ajax, please visit http://en.wikipedia.org/wiki/AJAX

20 For more information about XRI, refer to http://www.oasis-
open.org/committees/xri/faq.php

John
Highlight

John
Highlight

 Page 72 of 247

Note that in the above line, “openid.server” is a keyword and it should appear

exactly as shown above. The “href” part may vary depending upon which Identity

Provider you are using. Also note the URL to the Identity Provider may start with

HTTP or HTTPS depending upon Identity Provider configuration.

As you will see in Chapter 5 (where you run your own OpenID Server), a typical

HTML document at a URL may work like the following:

<html>

 <head>

 <link rel="openid.server"

href="http://idp.conformix.com/index.php/serve">

 <link rel="openid.delegate"

href="http://idp.conformix.com/?user=openidbook">

 </head>

 <body>

 <h3>OpenID Identity Page</h3>

 <p>

 This is the identity page for the user openidbook.

 </p>

 </body>

</html>

In this case, the following line shows the location of OpenID server that the

Consumer will contact for authentication purpose. Note that using this

mechanism you can separate the location of your Identity URL and the OpenID

server.

<link rel="openid.server"

href="http://idp.conformix.com/index.php/serve">

The following line shows the OpenID URI. Note that the delegate keyword is

used when the URI may be on a different machine than the server itself.

<link rel="openid.delegate"

href="http://idp.conformix.com/?user=openidbook">

John
Highlight

John
Highlight

John
Highlight

 Page 73 of 247

In this case the OpenID URI is “http://idp.conformix.com/?user=openidbook”

If the Consumer and Server support OpenID specifications version 2, an XRD

document can also be used instead of HTML document. A typical XRD document

may be as follows.

<?xml version="1.0" encoding="UTF-8"?>

<xrds:XRDS

 xmlns:xrds="xri://$xrds"

 xmlns:openid="http://openid.net/xmlns/1.0"

 xmlns="xri://$xrd*($v*2.0)">

 <XRD>

 <Service>

 <Type>http://openid.net/signon/1.1</Type>

 <Type>http://openid.net/sreg/1.0</Type>

 <URI>http://idp.conformix.com/index.php/serve </URI>

<openid:Delegate>http://idp.conformix.com/?user=ope nidbook</openid:Delega

te>

 </Service>

 </XRD>

</xrds:XRDS>

Detailed information about XRD documents will be presented in Chapter 5.

3.5 OpenID Specification Versions

OpenID specifications have two commonly used versions at the time of writing

this book. These are specification version 1.1 and version 2.0. There are some

differences between these two versions. Version 2.0 can be used in backward

compatible fashion, also referred to as “1.1 Compatibility Mode”. In this book, we

shall elaborate on the differences where appropriate. The original version of

OpenID specification was 1.0 which may still be in use in some implementations.

The main differences between OpenID specifications 1.1 and 2.0 are:

 Page 74 of 247

• Use of Yadis for service discovery

• Support for XRD documents

• Security improvements by adding nonce which protects against relay

attacks

• Support of DH-SHA256 key exchange and HMAC-SHA256 for stronger

encryption

There are some other minor changes and they will be noted on as-needed basis.

The version 2 can be backward compatible with version 1.0 and 1.1.

3.6 OpenID Messages

OpenID components exchange different messages during the authentication

process. These messages have very well defined formats and the Consumers and

Identity Providers have to adhere to these formats for successful communication

to occur.

Each message has a request and response combination and the request and

response may have different sets of parameters. When we explore these

messages, we shall explore the request and response parameters separately.

Depending upon the type of message, the Consumer and Identity Provider can

use direct or indirect communication methods as explained earlier in this

chapter. Note that the HTTP POST method is used for direct communication

whereas HTTP GET method is used for indirect communication.

There are four basic messages used in the OpenID system. These are as follows:

1. The associate message

2. The checkid_immediate message

John
Note
attenersi

 Page 75 of 247

3. The checkid_setup message

4. The check_authentication message

In the following sections, you will find detailed information about these

messages. This information is more descriptive to keep things simple. Detailed

protocol level sniffer output will be discussed in Chapter 5.

3.6.1 The associate Request Message

The associate message is sent by the Consumer (Relying Party or RP) to the

Identity Provider (or OP). The primary purpose of the association message is to

establish a shared secret between the Consumer and the Identity Provider. Note

that the Consumer web site can send this message to the Identity Provider at any

time it is required.

Since this is a direct communication between the Consumer and the Identity

Provider, the HTTP POST method is used for the associate message. While

initiating the associate request, the Consumer web site will send a number of

parameters with the request. The following is a list of parameters that can be sent

with the associate request.

• openid.ns

• openid.mode

• openid.assoc_type

• openid.session_type

• openid.dh_modulus

• openid.dh_gen

• openid.dh_consumer_public

 Page 76 of 247

Let us have a short discussion about all of these parameters and get an

understanding of where they are used.

The openid.ns Parameter

This is an optional parameter. The primary reason of this parameter is to define

the OpenID specification version number being used for a particular message.

The value of openid.ns will be “http://specs.openid.net/auth/2.0” if you are

using OpenID specification 2.0. If this parameter is not present or if the value of

this parameter is set to “http://openid.net/signon/1.1” or

“http://openid.net/signon/1.0”, the Identity Provider will fall back to older

versions of OpenID (OpenID Authentication Compatibility Mode).

Note that the openid.ns parameter was not present in OpenID specifications

version 1.1 and it is included in version 2.0 and above.

In the future when new versions of OpenID specifications become available, the

value of this parameter may change accordingly.

The openid.mode Parameter

This parameter shows the type of message and it is used to distinguish which

message is being sent or received. This parameter is present in all OpenID

messages.

The value of this parameter is “associate” for the associate request message.

The openid.assoc_type Parameter

This parameter is used to convey the algorithm used for signing the message.

OpenID uses the following algorithms for signing:

John
Highlight

John
Highlight

John
Highlight

John
Note
trasmettere

 Page 77 of 247

• If the value of this parameter is “HMAC-SHA1”, the signing mechanism is

the HMAC-SHA1 as defined in RFC-210421.

• If the value of this parameter is “HMAC-SHA256”, the signing is

performed using algorithm HMAC-SHA256.

Currently these are the only two values supported for OpenID.

The openid.session_type Parameter

The openid.session_type parameter is used to show the type of encryption used

in the message to encrypt MAC (Message Authentication Code) key. A MAC is

short code that is calculated using a secret key and input message. A MAC

algorithm takes the private key and the message as input and provides the MAC

code as output. Hashed Message Authentication Code or HMAC is one type of

MAC.

In OpenID messages, different types of encryption are used to encrypt MAC as

listed below:

• A value of this parameter is “DH-SHA1” for Diffie-Hellman SHA1

• A value of this parameter is “DH-SHA256” for Diffie-Hellman SHA256

• A value of “no-encryption” for sending MAC in the clear, without any

encryption. It is recommended to always use encryption. However, if an

SSL connection is used between the Identity Provider (IdP or OP) and the

Consumer web site, you can elect not to encrypt the MAC because the

transport layer is providing the encryption.

21 http://www.faqs.org/ftp/rfc/rfc2104.txt

 Page 78 of 247

Note that if the Identity Provider can’t support the openid.assoc_type or

openid.session_type parameters present in the request, it will reply with an

unsuccessful association response.

The openid.dh_modulus Parameter

The openid.dh_gen Parameter

The openid.dh_consumer_public Parameter

If you chose DH-SHA1 or DH-SHA256 for openid.session_type, the above three

parameters are part of the association message. OpenID specifications describe

how to generate these parameters. Detailed information about the Diffie-Hellman

algorithm is present in RFC-2631 (Diffie-Hellman Key Agreement Method) which

is available at http://www.ietf.org/rfc/rfc2631.txt.

A typical association request is as follows which will be discussed in more detail

in Chapter 5.

openid.mode=associate&openid.assoc_type=HMAC-SHA1&o penid.session_type=DH-

SHA1&openid.dh_consumer_public=KC6IpA00A6SlCikafFSl rTGql9H8+de6GFi5YLKz4p

yDxUMS5Z8pMOm/Ptr1gFmCcgAXjFbuxS73ZutDTFJYpADoIntFV rah9eaezMcw6SDR24cnFjN

c14xq0zGt3QcRLXaNTRVKfMW8evDAmLCrvEhU5c7B3eqmk+bMMrbQpcE=&openid.dh_modul

us=ANz5OguIOXLsDhmYmsWizjEOHTdxfo2Vcbt2I3MYZuYe91ou J4mLBX+YkcLiemOcPym2CB

RYHNOyyjmG0mg3BVd9RcLn5S3IHHoXGHblzqdLFEi/368Ygo79J RnxTkXjgmY0rxlJ5bU1zIK

aSDuKdiI+XUkKJX8Fvf8W8vsixYOr&openid.dh_gen=Ag==

3.6.2 The associate Response Message

The associate response message is sent from the Identity Provider to the relying

party. This is an HTTP 200 message as defined in RFC 2616

(http://www.ietf.org/rfc/rfc2616.txt). The message may show a successful or

failed association. In case of a successful association, the message will contain a

message handle and life of that handle in number of seconds. In case of a failed

 Page 79 of 247

association, an error is returned. Below is a list of parameters that are part of the

association response message. Note that the parameters that are already

explained will only be listed without any further explanation.

For successful association, the following parameters will be part of the response

message.

• openid.ns, as discussed earlier.

• openid.assoc_handle which is a printable ASCII string with maximum

length of 255 characters. Note that printable ASCII characters have codes

from 33 to 126. The association handle can be used in subsequent

messages. Typically association will last for some time. The association

handle is used to determine which key should be re-used for

encryption/decryption.

• openid.session_type parameter is the same as in the request if the

association is successful. If the association fails for any reason, the value

of this parameter will be “unsuccessful response”. There may be different

reasons for an unsuccessful association. For example, if the Consumer is

requesting to use SHA256 and the Identity Provider can only support

SHA1, the association will fail.

• openid.assoc_type parameter is the same as in the request if the

association is successful. If the association fails for any reason, the value

of this parameter will be “unsuccessful response”.

• openid.expires_in is a time in seconds after which the association

expires and the relying party should request a new association.

• openid.mac_key parameter is used only if the value of

“openid.session_type” was “no-encryption”. The value of this parameter is

base-64 encoded MAC key.

 Page 80 of 247

• openid.server_public is the Identity Provider’s public key. This

parameter is used if the Diffie-Hellman algorithm was used in the request.

• openid.enc_mac_key is the encrypted MAC key. This parameter is

used if the Diffie-Hellman algorithm was used in the request.

A typical response for association request is as follows and will be discussed in

more detail in Chapter 5.

assoc_handle:{HMAC-SHA1}{4607344a}{oDFF0g==}

assoc_type:HMAC-SHA1

dh_server_public:AIPkx6xJ3b1Wnr1olWL7suoZnABDc+lJRR 9DeNIBolGXQX3W2e+4udY2

p+dUcF5jKE6uoZuXLVPbimHbndBOYhUDUfkKaAjQtVvONerAjd5 RHyt2i2AoYrkjD26traC4j

zg7NukZlmrRjfPRg4q3gwW+EZEXvz+ba9JnQfsXx+iH

enc_mac_key:UtQHBswQimAZAp4s/9sfSQSpuq0=

expires_in:1209600

session_type:DH-SHA1

In case of unsuccessful association attempt, an “error” and “error_code”

parameters are also returned. The unsuccessful response may have other optional

parameters as well, but the error and error_code parameters are important.

3.6.3 The checkid_setup and checkid_immediate Request

Messages

The checkid_immediate and checkid_setup messages are used to get assertion

information from the OpenID server. These messages are initiated by the

Consumer web site. Indirect communication is used for these messages, which

means the Consumer will use HTTP GET method (instead of HTTP POST) for

sending and receiving these messages. It also means that these messages will pass

through the user agent (the web browser).

 Page 81 of 247

The checkid_immediate message is typically used by the Consumers that support

Ajax whereas checkid_setup is typically used by non-Ajax Consumers. Otherwise

these messages are similar with some minor difference and use cases.

The following are the parameters used with checkid_setup request message. The

parameters which are already discussed in the previous discussion are not

explained again.

• openid.ns

• openid.mode which will have a value “checkid_setup”.

• openid.claimed_id, is an optional parameter showing claimed

identifier. Claimed Identifier is a URL that the End User is claiming to

own but it is not yet verified.

• openid.identity is another optional parameter.

• openid.assoc_handle parameter is also optional and if present, it

shows an association that has already been established between OpenID

server and the Consumer. You have seen this in the associate request

already.

• openid.return_to parameter is used to inform the OpenID server the

location of the URL where it should redirect the browser after processing

the request. The OpenID server will use this URL to send the response

back to the Consumer.

• openid.realm parameter is another optional parameter. Realm is a URL

that OpenID server uses to identify a Consumer in a unique way. Realm

may contain wildcards like “*”. An example of realm would be

http://*.conformix.com.

 Page 82 of 247

Note that in OpenID specifications 1.1, openid.claimed_id and openid.realm

parameters are not present. Instead, another parameter openid.trust_root is

present which is optional and shows the actual URL for the Consumer web site.

You should also note that the request message reaches the OpenID server in two

steps. In the first step, HTTP 302 redirect method is used from the Consumer

web site to the web browser. Then in the next step, the browser sends HTTP GET

request to the OpenID server. This is shown in Figure 3-6.

Figure 3-6: The flow for the checkid_setup request message.

The following is a sample of checkid_setup message captured from a real

communication between OpenID server and a Consumer.

GET /index.php/serve?openid.assoc_handle={HMAC-

SHA1}{46071e25}{Tt8MwQ==}&openid.identity=http://id p.conformix.com/?user=

openidbook&openid.mode=checkid_setup&openid.return_ to=http://consumer.con

formix.com:80/finish_auth.php?nonce=nC5sKquX&openid .sreg.optional=email&o

penid.trust_root=http://consumer.conformix.com:80/ HTTP/1.1

More information about this message will be in Chapter 5.

 Page 83 of 247

3.6.4 The checkid_setup and checkid_immediate Response

Messages

Once the OpenID server receives the checkid_setup message, it does some

processing and sends a response back to the Consumer via web browser.

Optionally, the OpenID server may ask the End User to authenticate to the

OpenID server to ensure only the owner of the Identifier URL can authorize

access to the Identifier. This may include presenting a login page to the End User.

As mentioned earlier, implementation of that part is left to the OpenID server

and is not included in the OpenID specifications.

In the response message, the OpenID server will send multiple parameters back

to the Consumer web site. Some of these parameters are optional and others are

required. Discussion on those parameters which are already discussed in

previous section is omitted.

• openid.ns

• openid.mode which will have a value “id_res”. In case an association

fails, the value of this parameter will be:

o “setup_needed” in case the request was checkid_immediate.

o “cancel” if the request was checkid_setup.

• openid.op_endpoint shows the OpenID Server URL

• openid.claimed_id

• openid.identity

• openid.assoc_handle is the handle that was used to sign this message.

The Consumer will use this handle for verification purpose. This handle

may be the same as what was sent by the Consumer with the request

 Page 84 of 247

message (in case an association already exists). It may be different than

the original handle that the consumer sent with the request if the OpenID

server does not recognize the original handle. In that case, the server will

keep a record of the new handle so that the Consumer can use it for

verification purpose (using check_authentication message discussed

shortly).

• openid.return_to parameter is the same copy of the URL that the

Consumer sent with the request message.

• openid.response_nonce parameter is used to avoid relay attacks and

is unique for each message. The maximum length of nonce is 255

characters and it consists of server time stamp and additional ASCII

characters to make it unique. Time is taken in UTC22 format. Note that the

Consumer can reject as association if the timestamp is too far from the

current time.

• openid.invalidate_handle is used to show if the handle attached with

the request was valid or not. If the handle was valid, this parameter is

optional. Otherwise, the invalid handle should be attached with this

parameter. This will help the Consumer remove invalid handles from its

records.

• openid.signed contains a list of parameters that are signed. The list is

comma separated.

• openid.sig contains the signature which is base-64 encoded.

22 UTC time format information may be found in RFC 3339 at
http://www.ietf.org/rfc/rfc3339.txt

 Page 85 of 247

As with the request message, the response message reaches the Consumer web

site in two steps. In the first step, the OpenID Server uses the HTTP 302 redirect

method from the OpenID Server to the web browser. Then in the next step, the

browser sends the HTTP GET request to the Consumer web site. This is shown in

Figure 3-7.

Figure 3-7: The flow for the checkid_setup response message.

Following is a sample of checkid_response message from a real communication

between an OpenID server and a Consumer web site.

GET /finish_auth.php?nonce=nC5sKquX&openid.assoc_ha ndle={HMAC-

SHA1}{46071e25}{Tt8MwQ==}&openid.identity=http://id p.conformix.com/?user=

openidbook&openid.mode=id_res&openid.return_to=http ://consumer.conformix.

com:80/finish_auth.php?nonce=nC5sKquX&openid.sig=nX Wc+07GLaSf+RghmGubGPPg

lZc=&openid.signed=mode,identity,return_to,sreg.ema il&openid.sreg.email=r

r@conformix.com HTTP/1.1

Note that in OpenID specifications 1.1, if an assertion fails, a different parameter

is sent back in the response message. This parameter is “openid.user_setup_url”

which has a URL as its value. This URL can be used to redirect the web browser

for further steps.

 Page 86 of 247

3.6.1 The check_authentication Request Message

The check_authentication request and response messages are a necessary tool to

verify the assertion received from the User Agent (web browser). This is to ensure

that an attacker (malicious person) is not sending crafted assertion messages on

behalf of the OpenID Server. You should note the following about the

check_authentication messages.

1. This message is not sent if an association already exists between the

Consumer web site and OpenID Server. The association is initially

established using the associate message as already explained.

2. If an existing association is used, the Consumer will send the

“openid.assoc_handle” parameter in the request and the OpenID Server

will send back the same handle in the response. If that happens, the

Consumer web site would know that the OpenID Server has agreed to use

the existing association handle.

3. If the OpenID Server does not agree to use the association handle

provided by the Consumer web site, the response will include the

“openid.invalidate_handle” parameter in the response message and a

different “openid.assoc_handle”. Also the Consumer will use the

check_authentication message to validate the assertion.

4. When dumb mode is used, this response message will always be used

because the Consumer is stateless and has no record of any previous

association handle.

Note that this message is a direct communication between the Consumer and the

OpenID Server and the HTTP POST method is used for this communication. The

request has “openid.mode” parameter with a value “check_authentication” and

all other parameters that were part of the assertion message. A typical message

looks like the following:

 Page 87 of 247

openid.assoc_handle={HMAC-

SHA1}{460730e1}{zr1gKg==}&openid.identity=http://id p.conformix.com/?user=

openidbook&openid.invalidate_handle={HMAC-

SHA1}{46071e25}{Tt8MwQ==}&openid.mode=check_authent ication&openid.return_

to=http://consumer.conformix.com:80/finish_auth.php ?nonce=mAotRbGM&openid

.sig=4hwwyWbPtSAmP2dYxEC+dq605Os=&openid.signed=mod e,identity,return_to,s

reg.email&openid.sreg.email=rr@conformix.com

In Chapter 5, you will also see more detail about this message.

3.6.2 The check_authentication Response Message

In response to check_authentication message, the OpenID Server will send a

short message with following parameters:

• openid.ns

• is_valid parameter which has a value of “true” or “false”

• invalidate_handle parameter which is optional and in case of is_valid

parameter true, the Consumer will remove the handle from its stored list

of handles.

A typical message is as follows:

invalidate_handle:{HMAC-SHA1}{46071e25}{Tt8MwQ==}

is_valid:true

Note that this is a very short message and the reply includes only success or

failure of the authentication check.

 Page 88 of 247

3.7 How OpenID Works: Some Scenarios

As you know by now, OpenID is used to authenticate a user on different web sites

using your credentials stored at your identity server of choice. There are different

scenarios of how OpenID authentication will take place.

3.7.1 Scenario One: First Time Login to a Web Site Using

OpenID in Dumb Mode

When you login to an OpenID-enabled web site for the first time using OpenID, a

couple of things will happen. The following is a list of steps at a very high level:

1. You enter your OpenID URL at the login page of the Consumer web site

and click on the Login button.

2. The Consumer web site locates your OpenID server and may use the Yadis

protocol to discover the services provided at the URL. It will then redirect

your browser to that OpenID server to get your credentials.

3. Since this is the first time you went to this web site, your OpenID server

does not know if you trust this web site or not. So your OpenID server will

display a login screen to you where you will login to your OpenID server.

4. You mark this web site as a trusted web site at your OpenID server.

5. You are redirected back to this Consumer web site.

6. The web site checks your authentication with the OpenID server and the

authentication is complete.

Note that in Smart mode, the Consumer web site as well as the OpenID server

will establish an association and will keep a record of the association handle for

 Page 89 of 247

future use. But in Dumb mode, no association is established and Consumer will

not record anything for future use.

3.7.2 Scenario Two: Login to a Trusted Web Site Using

OpenID in Smart Mode

You may visit many web sites on regular basis. If these web sites support OpenID,

you can mark these web sites as “trusted” at your OpenID server where you store

your credentials. Once these web sites are trusted, the login process happens

automatically through the following steps.

1. You enter the URL on the Consumer web site login page and click on the

Login button.

2. The Consumer web site will establish an association with the OpenID

server, if a valid association does not exist.

3. The web site will then locate your OpenID server and redirect your

browser to that OpenID server to get your credential. It may also use

Yadis to discover the services as well.

4. The OpenID server knows that this web site is trusted, and knows which

parameters to pass to this web site. If you have already authenticated to

the OpenID server, it will provide the needed credentials to the web site

which will be used for login purpose. You will be logged into the web site

and all of the steps will happen automatically without any further

intervention from your side.

3.8 Problems Solved by OpenID

OpenID solves a number of issues with Identity Management. Some of these are

as follows:

 Page 90 of 247

• Users get control of what data should be shared with the Consumer web

site.

• OpenID allows using stored credentials across all OpenID-enabled web

sites. So you don’t need to create username and password on each web

site individually.

• Stops replay attacks by using one time use nonce variable. A Consumer

can ignore a positive assertion by looking at the timestamp in the nonce

variable. If the time stamp is too far off from the current time, the

Consumer can reject it.

3.9 OpenID Support in Different Languages

OpenID is supported in many programming languages and APIs are available.

You can find OpenID libraries in the following languages:

• Java

• PHP

• Perl

• C/C++

• C#

• Python

• Ruby

• Cold Fusion

 Page 91 of 247

Other companies are working on support in additional languages as well. By the

time you get this book, other languages may be already supported.

3.10 Major Companies Supporting OpenID

Many companies have started supporting OpenID (or a variant of OpenID) on

their web sites. Some of the companies and their web sites are as follows:

• AOL at http://dev.aol.com/openauth that uses OpenID with some

additional features.

• Drupal

• LiveJournal

You can find a list of many other companies at http://openiddirectory.com.

3.11 Chapter Summary

This chapter covered OpenID protocol flow and OpenID messages. The concepts

presented here were:

• OpenID definitions

• Smart and Dumb modes of operation. The smart mode is also called as

the “store” mode.

• How OpenID protocol flow works in a step-by-step approach.

• OpenID message types.

• Format of different OpenID messages.

• OpenID URL page and XRD document structure.

 Page 92 of 247

• HTTP protocol packets captured using Wireshark packet sniffer.

• Difference between OpenID direct and indirect messages. Direct

messages use HTTP POST method whereas indirect messages use HTTP

GET method.

• OpenID use-case scenarios.

In the next chapter, you are going to learn how to use OpenID libraries and how

to build OpenID enabled web sites.

3.12 References

For more information, you can refer to the following:

• OpenID web site at http://openid.net

• Web site for this book at http://www.openidbook.com

• Conformix Technologies Inc. http://www.conformix.com

• OpenID presentation at http://openidbook.com/presentations/COLUG-

OpenID.pdf

• OpenID Blog at http://openid.blogspot.com

• OpenID information at http://www.openidenabled.com

• OpenID Directory at http://www.openiddirectory.com

 Page 93 of 247

Chapter 4

4 Creating OpenID

Consumer Web Sites

In the previous chapters, there has been plenty of discussion about OpenID

concepts to build a basic understanding of OpenID system. At this point you

should have fairly good knowledge of the OpenID protocol and how it works. You

should also have understanding of different components of an OpenID system

and roles of these components. This is the first chapter where you will get into

hands-on information about OpenID Consumer (Relying Party or RP) and

Identity Provider (OpenID Provider or OP) and how they work together.

Specifically, the focus is on building an understanding of the OpenID Consumer

 Page 94 of 247

functionality and building OpenID-enabled web sites. You will use JanRain PHP

OpenID library23 and a sample Consumer web site included in this library.

However, note that there is no specific reason to use JanRain PHP library

examples in this book. Many other OpenID library implementations exist and, at

a high level, they work in similar ways although every library has different API

functions exposed to end users.

In this Chapter, first of all you will use the sample Consumer program that comes

with the library. An existing Identity Provider will be used to test this program.

Then you will build your own Consumer web site using the OpenID library.

There are some other topics as well in this Chapter, including graded

authorization. You will also explore sample source code of the Consumer

applications.

After reading this chapter, you will be able to:

1. Run sample Consumer application

2. View information contained in the OpenID authentication request and

response packets

3. Understand how an OpenID library can be integrated into a web

application

4. Build your own OpenID-enabled applications

5. Create applications that enable graded authorization

23 JanRain library can be downloaded from
http://www.openidenabled.com/openid/libraries/

 Page 95 of 247

Sample code presented in this Chapter will be made available for download from

OpenID book web site at URL http://www.openidbook.com. Sample web

application can be tested at http://www.openidbook.com/knowledgebase where

you can use any OpenID identifier to test graded authorization.

4.1 OpenID Consumer: Step-by-Step Processing

Typically a Consumer will go through multiple steps during the authentication

process. You should have a high-level idea of protocol flow based upon your

knowledge from previous chapters. In this Chapter, the discussion will be more

technical to show how the protocol implementation will work at the source code

and packet level.

Most probably, you will use OpenID library provided by some other vendor24 to

build the Consumer application. There are a number of OpenID libraries

available in the open source domain. As mentioned earlier, discussion in this

book uses JanRain library unless otherwise specified.

A typical Consumer application will go through authentication process as follows:

• Display a web page where an End User can enter identity URL.

• Get the OpenID URL from the End User and create OpenID

authentication request.

• Initialize a storage place where the Consumer will store information, if it

is working in smart mode. Just to remind you that in Smart Mode, the

Consumer has to keep the session information in a persistent storage so

that it can be re-utilized.

24 You can create your own library if you want to re-invent the wheel!

 Page 96 of 247

• Add any additional parameters to the request, like simple registration

parameters (e.g. first name, email, and so on)

• Send the request to OpenID server for authentication. The request will

also include the redirect path to the Consumer.

• Receive response from the server. This response will be received by the

URL included in the request. The web page at receiving URL will process

the response and depending upon success or failure, redirect the browser

to the next page. In case of authentication failure, this next page is usually

an error page displaying a message that authentication failed. Otherwise

the user will be logged in and the next page will contain some information

for the user showing that the user has logged in.

Different applications and libraries can handle these steps in different ways. In

this chapter, the examples will show how sample Consumer applications work.

4.2 Running a Simple Consumer Using JanRain

Library

The JanRain library (and other libraries) is available at

http://www.openidenabled.com/openid/libraries/. The library contains OpenID

API functions and sample programs.

After downloading, you will untar the library into a directory. For the

demonstration purposes, we have unpacked it under /backup/consumer

directory. The source code contains multiple folders under this directory. The

main folders of interest are as follows:

• The “Services” folder contains the Yadis protocol files.

 Page 97 of 247

• The “Auth” folder contains main OpenID library files. This is the main

folder for OpenID library and should be included in PHP search path.

• The examples folder contains sample OpenID client and server files.

These samples use library files in the above two folders (Services and

Auth).

Once you have these files in place, you have to configure the web server so that

these library files become accessible when a page request is received.

4.2.1 The Consumer System Configuration

Following is the configuration for the machine on which the sample Consumer

application is created.

• Fedora 6

• Apache version 2.2.3

• PHP version 5.1.6

You can also test it with other versions of Linux or Windows machines. I have

tested it with Fedora 4 as well and it works fine.

4.2.2 PHP Configuration

PHP must know where OpenID library is installed so that it can access it when

needed. There are three basic ways of making PHP aware of OpenID library as

listed below:

1. Copy the library files to a location which is already included in the PHP

include path

2. Modify PHP include path to include location where you have installed the

library files

 Page 98 of 247

3. Add library files to the directory tree of your own application

If you are running your application in a third party hosting company

environment, the third option listed above may be the best scenario as hosting

company may not allow you to change PHP configuration file.

For the sake of example in this book, I have chosen to edit the PHP configuration

file. To do so, edit /etc/php.ini25 file to include the following line in it.

include_path = ”/backup/consumer”

Note that the “/backup/consumer” is the directory under which “Auth” and

“Services” directories are located. Main OpenID library files are present under

the “Auth” directory and Yadis files are under “Services” directory.

After making this change, I would recommend restarting Apache web server to

ensure new configuration changes take effect.

4.2.3 Apache Configuration

To test the sample OpenID Consumer application, you have to configure the

Apache server so that you can access the application web page. As mentioned

earlier, we have installed source code of the sample application in

“/backup/consumer” folder. The following lines in Apache configuration are used

to create a web site http://consumer.conformix.com which will be used for test

purposes.

<VirtualHost *:80>

 ServerAdmin webmaster@consumer.conformix.com

 DocumentRoot /backup/consumer

 ServerName consumer.conformix.com

 ErrorLog logs/consumer.conformix.com-error_log

25 Depending upon Linux distribution, location of php.ini file may be different.

 Page 99 of 247

 CustomLog logs/consumer.conformix.com-access_lo g common

</VirtualHost>

Once you have this configuration done, you have to restart Apache for the

settings to take effect. On Fedora Linux machine, you can do it by executing the

following command. The process/command may be different for other operating

systems.

/etc/init.d/httpd restart

Make sure that you have created a record for consumer.conformix.com in the

DNS or created an entry in /etc/hosts file so that the web address resolves

properly while Apache restarts. Otherwise, Apache may complain about it when

you restart it.

After restarting Apache, now you are ready to launch a web browser and test the

application. The sample Consumer files are present under

/backup/consumer/examples/consumer folder which is the default location for

these files. Note that if you like, you can copy files in this folder to any other place

as well.

4.2.4 Running the Consumer Example

The sample Consumer application included in the library is very simple. It does

not do much other than the following:

1. Displaying a web page where you enter your OpenID URL

2. Displaying a message showing whether or not the authentication was

successful

A more meaningful example will be presented later in this chapter.

To test the application, go to URL

“http://consumer.conformix.com/examples/consumer” using web browser and

you will see the following screen where you will enter your OpenID URL. Note

 Page 100 of 247

that the DNS must be configured properly to resolve address for

consumer.conformix.com.

We created an OpenID Identity URL rrpip.pip.verisignlabs.com in Chapter One.

Let us use the same Identity URL with the sample Consumer application as

shown in Figure 4-1.

Figure 4-1: Running sample Consumer application included in the JanRain library.

In Figure 4-1, a simple form is displayed where you enter OpenID Identity URL.

The form submits the URL to the Consumer. Relevant HTML source code

segment for this form is as follows.

 <form method="get" action="try_auth.php">

 Identity URL:

 <input type="hidden" name="action" value="v erify" />

 <input type="text" name="openid_url" value= "" />

 <input type="submit" value="Verify" />

 </form>

Note that the form is submitted back to “try_auth.php” file using the GET

method. In your own implementation, you can use POST method as well and

OpenID puts no restriction here on the use of GET or POST. Also, in your own

application, you may have a more sophisticated form. For example, you may do

client side validation using JavaScript.

 Page 101 of 247

4.2.5 URL Sent to the OpenID Server

Once you click the “Verify” button in Figure 4-1, the form will be submitted to

“try_auth.php” page which will send an authentication request and you will be

redirected to the Identity Provider “pip.verisignlabs.com” where you will be asked

to authenticate to allow your Identity URL to be used with the sample client. You

can use a packet sniffer like Ethereal26 or Wireshark27 to capture the OpenID

authentication request/response packets. From the captured packets, you may

find something like the following when request is sent to the Identity Provider.

https://pip.verisignlabs.com/server?openid.assoc_ha ndle=%7BHMAC-

SHA1%7D%7B46033855%7D%7BhpDFZg%3D%3D%7D&openid.identity=http%3A%2F%2Frrpi

p.pip.verisignlabs.com%2F&openid.mode=checkid_setup &openid.return_to=http

%3A%2F%2Fconsumer.conformix.com%3A80%2Fexamples%2Fc onsumer%2Ffinish_auth.

php%3Fnonce%3DvvVS97if&openid.sreg.optional=email&o penid.trust_root=http%

3A%2F%2Fconsumer.conformix.com%3A80%2Fexamples%2Fco nsumer

Note that there are many characters which are encoded in the above snapshot. It

makes it difficult to view the packet in readable format. Following is the same

captured packet but with decoded characters so that you can see HTTP

parameters in a more clear way.

https://pip.verisignlabs.com/server?openid.assoc_ha ndle={HMAC-

SHA1}{46033855}{hpDFZg==}&openid.identity=http://rr pip.pip.verisignlabs.c

om/&openid.mode=checkid_setup&openid.return_to=http ://consumer.conformix.

com:80/examples/consumer/finish_auth.php?nonce=vvVS 97if&openid.sreg.optio

nal=email&openid.trust_root=http://consumer.conform ix.com:80/examples/con

sumer

Once you have authorized your ID to be used with the Consumer by entering your

username and password on the PIP web site, the authentication will take place

26 Available for download at http://www.ethereal.com

27 Available for download at http://www.wireshark.org

 Page 102 of 247

and you will see the following screen as shown in Figure 4-2. However, note that

many operations take place behind the scenes before you see the screen shown in

Figure 4-2. We shall discuss these operations later in this chapter. Basically,

some operations take place on the Consumer side and some on the OpenID

server side. This chapter is dedicated to the Consumer side processing while the

next chapter will show the server side processing in detail.

Figure 4-2: Sample client authentication showing success with the Identity Provider

Note that the screenshot shown in Figure 4-2 shows the successful

authentication. It also shows the Email address that the OpenID Server returned

with the authentication. The sample application does nothing more than that,

however it is useful to demonstrate the OpenID protocol.

To give you a little more idea about the response from the OpenID Server, the

following is a listing of the response from the server (captured using Wireshark).

First the response is shown in encoded form and then after in decoded form to

make it more readable. Note that this response shows that the authentication was

successful and also provides the email address that was returned with the

authentication.

http://consumer.conformix.com/examples/consumer/fin ish_auth.php?nonce=vvV

S97if&openid.sig=AXU8CPMEvGBOqVVzDh%2B%2F72QDins%3D &openid.mode=id_res&op

enid.return_to=http%3A%2F%2Fconsumer.conformix.com% 3A80%2Fexamples%2Fcons

 Page 103 of 247

umer%2Ffinish_auth.php%3Fnonce%3DvvVS97if&openid.sr eg.email=rr%40conformi

x.com&openid.identity=http%3A%2F%2Frrpip.pip.verisi gnlabs.com%2F&openid.s

igned=identity%2Creturn_to%2Cmode%2Csreg.email&open id.assoc_handle=%7BHMA

C-SHA1%7D%7B46033855%7D%7BhpDFZg%3D%3D%7D

The decoded28 URL is as follows:

http://consumer.conformix.com/examples/consumer/fin ish_auth.php?nonce=vvV

S97if&openid.sig=AXU8CPMEvGBOqVVzDh+/72QDins=&openi d.mode=id_res&openid.r

eturn_to=http://consumer.conformix.com:80/examples/ consumer/finish_auth.p

hp?nonce=vvVS97if&openid.sreg.email=rr@conformix.co m&openid.identity=http

://rrpip.pip.verisignlabs.com/&openid.signed=identi ty,return_to,mode,sreg

.email&openid.assoc_handle={HMAC-SHA1}{46033855}{hp DFZg==}

In this and next chapters, there will be a detailed discussion about the contents of

the authentication request and response messages. At this stage, we just wanted

to show you how request and response packets look like.

Also note that the listings shown above are not complete HTTP packets. We have

taken out HTTP header and other parts and have shown only the relevant parts of

the packet here. When you use Ethereal or Wireshark, you will be able to see the

complete HTTP header along with this information.

4.2.6 Storage of Association Information

As you know, during the authentication process, the Consumer will create an

association with the OpenID server. The association information is used for

subsequent authentication requests in the smart mode as discussed earlier in this

book. The sample Consumer application uses files on the disk to store association

information. The association information is stored in store path which is

“/tmp/_php_consumer_test” directory.

28 We have used http://meyerweb.com/eric/tools/dencoder/ to encode and decode URLs.
There are a number of other online tools for encoding and decoding URLs.

 Page 104 of 247

You can choose other types of storage with the library as well. For example, you

can use MySQL database to store association information.

If you look at the “/tmp/_php_consumer_test” folder, you will see some other

folders inside it, which are used to save different files. The following is a typical

list of files in this directory.

[root@conformix consumer]# ll /tmp/_php_consumer_test/

total 12

drwxr-xr-x 2 apache apache 4096 May 13 21:53 assoc iations

drwxr-xr-x 2 apache apache 4096 May 13 21:53 nonce s

drwxr-xr-x 2 apache apache 4096 May 13 21:53 temp

[root@conformix consumer]#

The listing below shows contents of a file in which association data is stored. Note

that there may be multiple files for storing the association data. Typically there

will be one association record for each OpenID server that the application has

established association. The following command shows contents of an association

file. Note that the filename is long and the command spans multiple lines.

[root@conformix consumer]# cat

/tmp/_php_consumer_test/associations/https-pip.veri signlabs.com-

QjQghlAPpZnm2u07UII5ffmbXKY-oprnnko0Qnqv3evXuQhrAe. C.yE

assoc_type:HMAC-SHA1

handle:{HMAC-SHA1}{46033855}{hpDFZg==}

issued:1174616028

lifetime:120960

secret:EQvSUvYDv0j4HYQvCluxzbUiWi4=

version:2

[root@conformix consumer]

Note that this file has a lot of information in it including the shared secret and

the lifetime for the shared secret.

 Page 105 of 247

4.3 Discussion on Sample Consumer

The sample consumer program that comes with the JanRain library is very

simple and consists of only few files. The processing starts with “index.php” file

which displays the login screen shown in Figure 4-1. This file gets the OpenID

URL from the End User and then sends it to “try_auth.php” file. Once the

“try_auth.php” file has received the OpenID URL, it does the following:

1. Use “common.php” file that would initialize a Consumer object in the

memory. This object is used for authentication purposes and handles all

communication. The “common.php” file also initializes a “store” where

data will be stored by the Consumer. A store is nothing more than a

storage place and is used to store association information between

Consumer and the Identity Provider. As mentioned earlier, the default

store for this sample application is the “/tmp/_php_consumer_test”

directory.

2. Construct a “process_url” variable which contains the URL where the

OpenID server will redirect the browser after authentication process is

complete.

3. Construct “trust_root” variable that contains base URL where the OpenID

Consumer applications resides.

4. Create authentication request object that will contain all information to be

sent to the OpenID server. At this point, the application also adds “email”

to the authentication request which is an optional parameter in the

request.

5. Send the authentication request to the OpenID server and get the redirect

URL from the server upon successful authentication.

 Page 106 of 247

Once the request has been sent to the OpenID server, the “try_auth.php” file has

completed its job. Now the server will perform authentication and will redirect

the web browser using the URL included in the authentication request (the URL

contained in “process_url” variable). This URL points to “finish_auth.php” file

which will display appropriate message to the End User after authentication is

complete.

This whole process is shown in Figure 4-3. When you look at this picture, you can

see the “index.php” page gets the OpenID URL from an End User and sends it to

“try_auth.php” file. This file then constructs an authentication request and sends

it to the OpenID server. The OpenID server processes this request and then sends

the result back to “finish_auth.php” file using web browser redirection method.

Please also note that in Figure 4-3, the association mechanism is not shown. This

diagram is only to show how the sample Consumer application works and which

files are used in the authentication sequence.

Figure 4-3: Use of sample client source files during authentication request processing.

 Page 107 of 247

If you are building your own Consumer application, obviously you will use your

own files and file names for this purpose. You can have one complex page to do

all of the work that is done by three simple pages shown in Figure 4-3. The point

is that as a developer, you have choice of using the OpenID library the way you

want.

Next, you will see relevant parts of the three files in the sample Consumer

application.

4.3.1 Sample index.php File

This file is responsible to display a web page with an HTML form. You enter your

OpenID URL on this web page. The source code for this form is as shown below.

<form method="get" action="try_auth.php">

 Identity URL:

 <input type="hidden" name="action" value="verify" />

 <input type="text" name="openid_url" value="" />

 <input type="submit" value="Verify" />

</form>

As you can see, this is very simple page and there is nothing special about this.

Once a user clicks on the “Verify” button, the form is submitted to “try_auth.php”

script as shown next.

4.3.2 Sample try_auth.php File

The “try_auth.php” is responsible for creating OpenID request and sending it to

the OpenID server. The following is a listing of this file.

<?php

require_once "common.php";

session_start();

// Render a default page if we got a submission wit hout an openid

// value.

if (empty($_GET['openid_url'])) {

 Page 108 of 247

 $error = "Expected an OpenID URL.";

 include 'index.php';

 exit(0);

}

$scheme = 'http';

if (isset($_SERVER['HTTPS']) and $_SERVER['HTTPS'] == 'on') {

 $scheme .= 's';

}

$openid = $_GET['openid_url'];

$process_url = sprintf("$scheme://%s:%s%s/finish_au th.php",

 $_SERVER['SERVER_NAME'], $_S ERVER['SERVER_PORT'],

 dirname($_SERVER['PHP_SELF']));

$trust_root = sprintf("$scheme://%s:%s%s",

 $_SERVER['SERVER_NAME'], $_SE RVER['SERVER_PORT'],

 dirname($_SERVER['PHP_SELF']));

// Begin the OpenID authentication process.

$auth_request = $consumer->begin($openid);

// Handle failure status return values.

if (!$auth_request) {

 $error = "Authentication error.";

 include 'index.php';

 exit(0);

}

$auth_request->addExtensionArg('sreg', 'optional', 'email');

// Redirect the user to the OpenID server for authe ntication. Store

// the token for this authentication so we can veri fy the response.

$redirect_url = $auth_request->redirectURL($trust_r oot,

 $process _url);

header("Location: ".$redirect_url);

 Page 109 of 247

?>

Note that the optional parameters are inserted in the request using the following

line. In this case you are requesting only email address from the OpenID server.

$auth_request->addExtensionArg('sreg', 'optional', 'email');

You can create a comma separated list of multiple parameters if want to request

more information. For example, the following line will request email and date of

birth as optional parameters.

$auth_request->addExtensionArg('sreg', 'optional', 'email,dob');

Use of multiple parameters is discussed in more detail later in this chapter.

After receiving the request sent by the “try_auth.php” file, the OpenID server

processes the request and will redirect the browser back to the “finish_auth.php”

file which is shown next. If you look carefully at the listing shown above, you will

see that URL pointing to “finish_auth.php” is included in the request.

4.3.3 Sample finish_auth.php File

Following is listing of the finish_auth.php file. Note that this is invoked by a

redirect request from the OpenID server to the web browser. All authentication

parameters are part of the query string attached to the URL. So this PHP script

will look into the query string and determine if the response is a success or

failure. It will then display appropriate message.

Note that this script also checks XRI but for the time being we are just going to

ignore it and concentrate only on other parameters.

<?php

require_once "common.php";

session_start();

 Page 110 of 247

// Complete the authentication process using the se rver's response.

$response = $consumer->complete($_GET);

if ($response->status == Auth_OpenID_CANCEL) {

 // This means the authentication was cancelled.

 $msg = 'Verification cancelled.';

} else if ($response->status == Auth_OpenID_FAILURE) {

 $msg = "OpenID authentication failed: " . $resp onse->message;

} else if ($response->status == Auth_OpenID_SUCCESS) {

 // This means the authentication succeeded.

 $openid = $response->identity_url;

 $esc_identity = htmlspecialchars($openid, ENT_Q UOTES);

 $success = sprintf('You have successfully verif ied '

 '%s as your identity.',

 $esc_identity, $esc_identity);

 if ($response->endpoint->canonicalID) {

 $success .= ' (XRI CanonicalID: '.$respons e->endpoint-

>canonicalID.') ';

 }

 $sreg = $response->extensionResponse('sreg');

 if (@$sreg['email']) {

 $success .= " You also returned '".$sreg[' email']."' as your

email.";

 }

}

include 'index.php';

?>

The “index.php”, included at the end of this script, will display appropriate

message contained in the “success” variable and then display the form where you

can check a different OpenID URL. Please refer to Figure 4-2 to see the output of

this process.

 Page 111 of 247

4.4 Requesting Additional Parameters using Simple

Registration Extension

OpenID Simple Registration extension is used to get most commonly used

parameters associated with a user. For example, as a Consumer you can request

date of birth, email address, full name, and so on while sending an authentication

request to the OpenID server. Although, this extension will be discussed in detail

in Chapter 6, here we just want to give you a short overview about how it is used

with JanRain library.

In the previous section, when you sent authentication request and also requested

the email address with it, you actually used simple registration extension. The

line of code that you used to add email address to the request was as follows:

$auth_request->addExtensionArg('sreg', 'optional', 'email');

In the above line, there are three arguments to the function call

addExtensionArg. These are explained below.

1. The “sreg” argument shows that you are adding simple registration

extension.

2. The “optional” argument shows that you are informing the Identity

Provider (OpenID server) that this parameter is optional. This means that

Identity Provider may ignore this parameter if it needs to. It also means

that the End User who is the owner of the Identity URL may also choose

not to send this parameter back with the response message, if the Identity

Provider gives the End User an option to do so. If the Consumer must

have this parameter from the Identity Provider, you can replace “optional”

with “required” to inform the Identity Provider that this argument is not

optional and authentication will fail if it is not available.

 Page 112 of 247

3. The third argument, which is “email” shows the actual information that

the Consumer is requesting. In this case it is email address of the End

User.

You can also request multiple parameters with an authentication request. The

following line in the program will send a request for four parameters: email

address, fullname, nickname, and date of birth.

$auth_request->addExtensionArg('sreg', 'optional',

'email,fullname,nickname,dob');

Note that all of the “optional” parameters are bundled together in a single

function call. The parameters in the list are separated by commas.

When you send authentication request with multiple parameters as mentioned

above, the OpenID server will give you a chance to decide which parameters you

want to return back the Consumer. This is shown in Figure 4-4 where the OpenID

server is asking the End User which parameters should be sent to the Consumer.

In Figure 4-4, and the remaining part of this book, you will use the following

settings:

• Identity Provider or OpenID server will be “idp.conformix.com” which is

installed for the purpose of examples in this book (not available over the

Internet). You will learn how to install your own OpenID server in the

next chapter.

• Consumer application will be at web location “consumer.conformix.com”.

Some other sample applications will also be built and we shall show how to do so

as we go through this book.

 Page 113 of 247

Figure 4-4: Requesting multiple optional parameters using simple extensions.

The web page shown in Figure 4-4 is displayed after you have sent authentication

request and the before OpenID has responded back. Here the server is showing

that a Consumer “http://consumer.conformix.com” running on port number 80

is requesting authentication for URL

“http://idp.conformix.com/?user=openidbook”. The Consumer is also requesting

four optional parameters as shown in this Figure under the “Name” column. The

server also displays the current values of these parameters in the “Value” column.

These values are taken from the stored profile for the Identity URL. As shown in

the figure, the stored value of “Nickname” inside the server database is “rr”, email

address is “rr@conformix.com”, and so on29. If you keep all checkboxes as

checked, all of these values will be sent back to the Consumer. However, if you

don’t want to send some of these values back to the Consumer, you can uncheck

29 Note that the January 25, 1904 is not my real date of birth. Just wanted to clarify I am
not that old!

 Page 114 of 247

the checkboxes. The last column with the “Status” heading shows whether a

parameter is “optional” or “required”. In this Figure, all parameters are shown as

“optional”. Remember that you may chose not to send back value of any

“optional” parameter during the authentication process.

You can also request a combination of “optional” and “required” parameters with

the authentication request. The following two lines of code add three “optional”

parameters which are email, fullname, and nickname and one “required”

parameter which is date of birth (dob). Note that all “optional” parameters are

bundled together and all “required” parameters are bundled together in the next

API function call.

$auth_request->addExtensionArg('sreg', 'optional',

'email,fullname,nickname');

$auth_request->addExtensionArg('sreg', 'required', 'dob');

When you send this request to the OpenID server (idp.conformix.com), it will

show a web page to you similar to the one in Figure 4-5.

 Page 115 of 247

Figure 4-5: Requesting multiple optional and required parameters using simple

extensions.

In this Figure, the “Status” column shows that the date of birth is a “Required”

field and if you uncheck and don’t send it back to the Consumer, the

authentication will fail.

In addition to sending request for different parameters with the authentication

request, the Consumer should also be able to handle the returned parameters

when the reply is received. In the sample Consumer application, the

“finish_auth.php” script handled the returned parameter “email” using the

following lines of code.

$sreg = $response->extensionResponse('sreg');

if (@$sreg['email']) {

 $success .= " You also returned '".$sreg['email'] ."' as your email.";

}

 Page 116 of 247

When you are requesting multiple parameters, you have to add code in the

“finish_auth.php” file to handle additional parameters. For example, you can

have following lines in this file to check all of the four parameters returned by the

OpenID server.

$sreg = $response->extensionResponse('sreg');

if (@$sreg['email']) {

 $success .= " You also returned '".$sreg['email'] ."' as your email.";

}

if (@$sreg['fullname']) {

 $success .= " You also returned '".$sreg['fullnam e']."' as your

fullname.";

}

if (@$sreg['nickname']) {

 $success .= " Your postal code is '".$sreg['nickn ame']."' as your

nickname";

}

if (@$sreg['dob']) {

 $success .= " Your postal code is '".$sreg['dob']."' as your Date of

Birth";

}

Figure 4-6 shows the response web page after making the above changes. In your

application login process, if you are expecting a parameter which is not included

in the response from the OpenID server, you can display an appropriate message

to indicate that a required parameter is missing.

 Page 117 of 247

Figure 4-6: Response for multiple parameters.

Declaring parameters as “optional” or “required” is a powerful mechanism that

can be used for different purposes. Graded authorization is one of these

mechanisms which is discussed next. It is also used for a new user registration by

many Consumer web sites when a person logs into a Consumer web site for the

first time.

4.5 Risk Based Access Control and Graded

Authorization

Using OpenID, A web site can provide different levels of access based upon

information received from Identity Provider in a user profile. For example, a

company providing blog space can provide multiple levels of access to web site

visitors. Following is an example of some of the features that can be

implemented.

• The web site can accept any credentials to provide read-only access to the

web site visitors.

 Page 118 of 247

• If a visitor wants to post comments, the person must provide an email

address, first name, and last name.

• For anyone who wants to get access to post new articles, needs to provide

zip code in addition to all other information.

Similarly, a financial services company may allow a person to look at the current

statement by providing a basic set of information and after matching the

provided information with the one which is already on customer record file. On

the other hand, to make a financial transaction, the person has to provide a

higher level of information which may include date of birth, first/last name,

mailing address, etc, depending upon the risk level. OpenID enabled web sites

can be built to detect which information is needed for a particular type of service

provided by web sites.

In a typical web application with graded authorization, you will assign an access

level to different types of privileges. When someone wants to get those privileges,

you would check if sufficient credentials are presented to the application. If not,

you would allow only that level of access for which the credentials are sufficient.

In the next section, you are going to build an application that provides three

levels of access depending upon which parameters you provide with the

authentication.

4.5.1 Sample Web Site Using OpenID Consumer

Conformix Knowledge Base is a sample implementation of graded authorization.

The application implements a knowledge system that is used for technical

support purposes. Customers can view, update, or add knowledgebase articles

depending upon level of access granted. The level of access is determined based

upon different parameters that are requested during the authentication process.

 Page 119 of 247

Clarity is the main purpose for this application and there are much better ways to

implement it in a real environment. The purpose is to clarify the concept of

graded authorization. The application is available at

http://www.openidbook.com/knowledgebase where you can test using your

OpenID URL.

Articles are stored in a MySQL backend database. Each knowledgebase article in

this application has three simple parts as listed below:

1. Article name

2. Summary

3. Detail

Users are authenticated at different levels to get access these articles. The more

information a user provides, the higher level of access the user gets. The following

rules apply to this application.

1. A user can login using OpenID identity URL. However, the user has to

provide email address which is mandatory. If an email address is not

provided, the user is sent back to login page.

2. Once a user logs in using OpenID identity URL and provides “email”

parameter, the user gets read-only access to the list of knowledgebase

articles. However, the user can only see the article “Name” and

“Summary” parts and is not able to view the “Detail” part of the article.

3. If a user also provides “fullname”, in addition to “email”, the user also gets

access to the “Detail” part of knowledgebase articles. The user can also

edit the article but can’t add a new one.

4. If a user provides “email”, “fullname”, and “dob” (date of birth), the user

also gets the privilege to edit knowledgebase articles.

 Page 120 of 247

These rules are implemented in this application. Next, you will find detailed

information about how this application is built and how to test it.

4.5.1.1 Backend Database

A backend database is used to store knowledgebase articles and capture user

information. There are two main tables in the database: the “user” table saves

information about the web site users and the “article” table stores information

about knowledgebase articles.

The “user” table has the following fields:

• userId

• OpenIDURL

• fullName

• email

• dob

The “article” table has following fields

• articleId

• name

• summary

• detail

The following script creates the database “knowledgebase”, two tables (article and

user) in the database, and a user “kbuser” with a password “kbpassword” that has

access to these tables. This is a MySQL script and can be used with other

databases as well with little or no changes.

 Page 121 of 247

CREATE DATABASE knowledgebase;

GRANT ALL ON knowledgebase.* TO 'kbuser'@'localhost ' IDENTIFIED BY

'kbpassword';

USE knowledgebase;

DROP TABLE IF EXISTS `article`;

CREATE TABLE `article` (

 `articleId` int(10) unsigned NOT NULL auto_increm ent,

 `name` varchar(255) default NULL,

 `summary` text,

 `detail` text,

 PRIMARY KEY (`articleId`)

) ENGINE=InnoDB;

DROP TABLE IF EXISTS `user`;

CREATE TABLE `user` (

 `userId` int(10) unsigned NOT NULL auto_increment ,

 `OpenIDURL` varchar(255) default NULL,

 `fullName` varchar(255) default NULL,

 `email` varchar(255) default NULL,

 `dob` datetime default NULL,

 PRIMARY KEY (`userId`)

) ENGINE=InnoDB ;

Once you have created the database, you can download the application and install

it on your own computer. You need to have PHP, MySQL, and Apache running on

the computer where you install it.

4.5.1.2 Source Files

Following is a list of source files used in this sample application. You can also

download the source code files in tar format from http://www.openidbook.com.

JanRain library is used for OpenID authentication and you can configure it as

discussed earlier in this chapter. Other source files are as follows:

• The “index.php” file shows basic information about this application.

• The “login.php” file is used to login to the application.

 Page 122 of 247

• The “article.php” file is used to display knowledgebase articles. It used

PHPMyEdit library to generate grid layout.

• The “finish_auth.php” controls authorization level based upon

information provided by the Identity Provider. This file is included in the

“article.php” and is not directly called.

• The “include/menu.php” creates menus for the application.

• The “include/header.php” and “include/footer.php” display header and

footer information respectively.

• The “config.php” file present in the “include” directory includes database

configuration and access information.

There are other files in this application which are part of PHPMyEdit. These files

are used to display records in the database in the grid format. For understanding

this application, you can skip those.

The index.php source code is as shown below. This file displays the main page of

the application where you can click on the “Login” link to go to the login page.

<?php

/** **********************

*

Written by: Rafeeq Ur Rehman

 Copyright (c) 2001 - 2007 Conformix Technologies Inc. All rights

reserved.

*** **********************

*/

ini_set ('output_buffering' , '9000');

ini_set ('display_errors' , '0');

?>

<link rel ="stylesheet" type ="text/css" media ="screen"

href ="include/new.css" >

<?php

 Page 123 of 247

header ("Cache-control: private");

include "include/header.php" ;

include "include/menu.php" ;

show_menu_submit("home");

show_menu_blank();

?>

<p><table><tr><td bgcolor =#02 a043 ><center><H1>

 Knowledgebase Sample Application </td></tr></table>

<p><table><tr><td bgcolor =#F8F8F8><center><H1> Welcome to the

 Knowledgebase Sample Application Web Site </H1></center><p>

 <center> This web application is used to demonstrate risk-ba sed

 and multi-level access control using OpenID protoc ol. Depending

 upon the parameters received from OpenID Provider, different

 level of access will be granted to a user.

 <p>For more information, contact

 rafeeq.rehman@gmail.com </td><td></tr></table>

<?php include "include/footer.php" ;?>

The login.php source code is shown below. This page displays a text box where

you can enter your OpenID URL.

<?php

/** ******************* ***

*

Written by: Rafeeq Ur Rehman

 Copyright (c) 2001 - 2007 Conformix Technologies Inc. All rights

reserved.

*** **********************

*/

ini_set ('output_buffering' , '9000');

ini_set ('display_errors' , '0');

?>

<link rel ="stylesheet" type ="text/css" media ="screen"

href ="include/new.css" >

 Page 124 of 247

<?php

header ("Cache-control: private");

include "include/header.php" ;

include "include/menu.php" ;

show_menu_submit("login");

show_menu_blank();

echo "<p><table><tr><td bgcolor=\"#02a043\"><center><H1> <font

color=white>" .

 "Knowledgebase Sample Application" .

 "</td></tr></table>" ;

?>

<form method ="get" action ="try_auth.php" >

 Enter your OpenID URL:

 <input type ="text" name="openid_url" value ="" />

 <input type ="submit" value ="Login" />

</form>

<?php include "include/footer.php" ; ?>

The following part in the “finish_auth.php” file sets the permission level for the

user who logged in. This is done by setting a session variable “level”. Note that all

pages in the application can check value of this variable and then grant certain

level of permission to the logged in user.

$email=$_SESSION['email'];

$fullname=$_SESSION['fullname'];

$dob=$_SESSION['dob'];

$nickname=$_SESSION['nickname'];

$openid=$_SESSION['openid'];

if (strlen ($email)>0 AND strlen ($dob)>0 AND strlen ($fullname)>0) {

 $_SESSION['level'] = ACCESS_FULL;

}

else if (strlen ($email)>0 AND strlen ($fullname)>0) {

 $_SESSION['level'] = ACCESS_UPDATE;

 Page 125 of 247

}

else if (strlen ($email)>0) {

 $_SESSION['level'] = ACCESS_READ_ONLY;

}

else {

 session_unset ();

 session_destroy ();

 header ("location: login.php");

}

header ("location: article.php");

Also note that if “email” is not provided with the authentication response from

the OpenID server, the user is sent back to the login page (because email is a

“required” parameter).

The following section in the “article.php” file checks the value of the “level”

variable and then sets appropriate level of permission.

session_start();

$email=$_SESSION['email'];

$fullname=$_SESSION['fullname'];

$dob =$_SESSION['dob'];

$nickname =$_SESSION['nickname'];

$openid =$_SESSION['openid'];

$level =$_SESSION['level'];

if ($level == ACCESS_FULL) {

 $opts ['options'] = 'LACPVDF' ;

}

else if ($level == ACCESS_UPDATE) {

 $opts ['options'] = 'CVL' ;

}

else if ($level == ACCESS_READ_ONLY) {

 $opts ['options'] = 'L' ;

}

else {

 session_unset();

 session_destroy();

 Page 126 of 247

 header(" location : login.php");

}

You can check documentation for PHPMyEdit for more information about how

values of variables like 'LACPVDF' control access to data.

4.5.1.3 Application Logic

The web application is very simple. When a user enters the OpenID URL, the web

application acts as relying party (Consumer) and authenticates the user against

OpenID server. It sends additional parameters in the authentication request as

listed earlier. Following are important points about the application logic.

• Request for the “email” parameter is sent as “required” parameter.

• Request for “dob”, “nickname”, and “fullname” is sent as optional

parameters.

• If the received response does not contain “email” address, or the email

address is not valid, the authentication fails and user is asked to

authenticate again.

• If the “email” parameter is returned back but “dob” and “fullname” are

missing, read-only access to article “name” and “summary” part is

granted.

• If “email” and “dob” parameters are returned but “fullname” is missing,

read-only access to “name” and “summary” parts of articles is provided.

• If “email” and “fullname” parameters are returned but “dob” is missing,

read-write access to all parts of articles is provided. However, you can’t

add a new article to the database.

• If all “email”, “fullname” and “dob” parameters are returned, full read-

write access is granted to the user.

 Page 127 of 247

Using these principles, you can understand the operation of this application. In

the next part, you will use this application to verify these rules.

4.5.1.4 Using Sample Application

After installing the application, you will point your browser to the application

URL. You can also use the pre-configured application at

http://www.openidbook.com/knowledgebase for simplicity. You will see

something like Figure 4-7 after launching this application.

Figure 4-7: Main page for sample Knowledgebase application

To login to the application, click on the Login link on the top-left side of this page

and you will see the text box to enter your OpenID URL as shown in Figure 4-8.

In Figure 4-8, you will enter the OpenID URL and then click “Login” button.

 Page 128 of 247

Figure 4-8: Login page for sample Knowledgebase application

Once you have clicked on the “Login” button in Figure 4-8, depending upon your

OpenID URL, the browser will be redirected to the OpenID server. The OpenID

server may present web page where you may have to authenticate yourself and

then ask you which parameters are requested and which values to send back. This

may something similar to as shown in Figure 4-5.

Once you have authenticated to the OpenID server, the server will send back the

selected parameters. Depending upon returned values, the application will give

you appropriate permissions to certain features. Figure 4-9 shows lowest level of

access where you can see only “Name” and “Summary” for each article and

nothing more.

 Page 129 of 247

Figure 4-9: Read-only access to knowledgebase

Figure 4-10 shows the screenshot where you get the privilege to view and update

existing articles. For this purpose, you can use button at the bottom of the list or

icons in the left-most column.

Figure 4-10: Update access to knowledgebase.

When you edit an article, you will see a screenshot shown in Figure 4-11 where

you can make changes and then update the article.

 Page 130 of 247

Figure 4-11: Updating articles in the database.

Figure 4-12 shows a screenshot where you get full rights for the application and

you are able to add/delete/modify/view articles.

Figure 4-12: Full access to knowledgebase

 Page 131 of 247

This example shows how OpenID can be used to grant different level of access to

users of an application. In some literature this is also known as graded

authorization.

4.5.2 One-Time Authorization

In some cases, an application may not be interested in authentication itself. The

application may want to give access to a user depending upon the information

provided. In that scenario, the application will ask some parameters to identify a

user by comparing response from the Identity Provider by some data that the

application already knows about a user.

For example, an insurance company may ask data like first name, last name, date

of birth, and address to allow a user to pay bills, without showing any policy

information. One Time Authorization may be useful in such a scenario.

4.6 Storing Credentials by OpenID Consumers

A Consumer will store OpenID association credentials when working in the smart

mode. These credentials can be stored in different ways, including caching in

database, using flat files on disk, and so on.

In the sample application, we have used flat files “store” to cache credentials. By

changing the type of “store”, you can cache this data into database as well. The

OpenID libraries provide different mechanisms for selecting “store”.

4.7 Web Browser Support and Browser Plug-in

OpenID specifications provide recommendation about creating the Login page

for Consumer web sites so that it is easy for web browsers or other user agents to

identify OpenID-enabled web sites. Following is the extract from section 7.1 of

the OpenID specification version 2, draft 11.

 Page 132 of 247

“The form field's "name" attribute SHOULD have the value "openid_identifier",

so that User-Agents can automatically determine that this is an OpenID form.

Browser extensions or other software that support OpenID Authentication may

not detect a Relying Party's support if this attribute is not set appropriately. ”

OpenID SeatBelt is one such plug-in for Firefox browser from Verisign Labs. It

detects if a web page has certain identifiers as listed about on the web page. If it

finds a web page as OpenID login page, it can automatically fill in your OpenID

URL in the appropriate text box. The plug-in can also help in preventing phishing

URLs.

Detailed information about the SeatBelt plug-in is available at

http://beta.abtain.com/account/resources.jsp or

https://jpip.verisignlabs.com/seatbelt.do.

The advantage of using a plug-in like this is that you authenticate to your Identity

Provider only once and then the plug-in keeps you logged in. Now when you go

from one OpenID enabled web site to another, you the plug-in does the login

work for you.

As we will see later in this book, OpenID compatibility with IE has also been

tested and it works very well.

4.7.1 Verisign SeatBelt and Firefox

Once you install SeatBelt plug-in in the web browser, you will see its status on the

bottom-right corner of the browser window as shown in Figure 4-13. IN this

Figure, there are two status symbols shown: the left-hand side icon shows that a

user is not logged-in, whereas the right hand side symbol shows a logged in user.

Figure 4-13: Status information for SeatBelt.

 Page 133 of 247

The left hand icon in Figure 4-13 shows that you are not logged in. The other icon

with “openidbook” caption shows that you are logged in as user “openidbook” to

your identity provider.

If you are not yet logged in, you can double click on the icon to login to your

service provider.

To view/change different SeatBelt settings, you can right click on the icon and

select “SeatBelt Settings” and you will see a window as shown in Figure 4-14.

Figure 4-14: SeatBelt settings

Note that you can use any OpenID provider with SeatBelt and it is not limited to

Verisign only (using the OpenID Providers TAB in Figure 4-14).

Once you are logged in to SeatBelt and go to an OpenID-enabled web site,

SeatBelt will automatically detect that it is an OpenID enabled web site. It will

then fill your OpenID URL automatically in the login text box. For example, when

 Page 134 of 247

I go to LiveJournal web site, my OpenID URL is automatically filled in as shown

in Figure 4-15.

Figure 4-15: SeatBelt automatic filling of OpenID URL on OpenID enabled web site

By just clicking on the “Login” button, I shall be logged in to the LiveJournal web

site because I have already set up LiveJournal as a trusted web site for my

OpenID. This makes the whole process very simple.

Note that the login page of a web site must comply with OpenID specifications to

make this happen as discussed in previous section.

4.7.2 Sxipper Plug-in

Like SeatBelt, Sxipper is also a Firefox plug-in and you can download it from

http://www.sxipper.com/ and install into the Firefox. It will also show a small

icon towards the bottom left corner of the browser. By clicking on that icon, you

can configure the plug-in with your existing OpenID URL or create a new URL as

well.

When you start configuring the plug-in the first time, you will see a setup window

where you can create your initial OpenID with Sxipper and manage your

personas.

On a high level, this plug-in also works similar to SeatBelt with some differences

in functionality.

 Page 135 of 247

4.8 OpenID Libraries

There are many OpenID libraries that are available in different languages. Some

of the libraries are as listed below:

• PHP

• Java

• Perl

• Ruby

• Python

• C

To get a complete and latest list of all libraries, please visit

http://openid.net/wiki/index.php/Libraries

New libraries are being created continuously so I would advise to check the above

URL if you are looking for a particular library.

4.9 Chapter Summary

In this chapter, you have learned some very important concepts about OpenID.

You also learned how to create OpenID enabled web sites and perform graded

authorization. You also saw some of the OpenID messages. A sample OpenID

application was also presented.

OpenID simple registration extensions are used to pass additional parameters to

the Consumer, if requested. The owner of the OpenID gets a chance to review

request for these additional parameters and can make a decision about which

parameters to send back and which ones should be refused. The Consumer

 Page 136 of 247

application then decides what level of access to grant depending upon which

parameters are sent back to Consumer.

Sample Consumer application which implements one way of graded

authorization is available at http://www.openidbook.com/knowledgebase.

Towards the end of this chapter, you also got introduction two Firefox plug-in

that can be used to simplify OpenID login process. These plug-in are SeatBelt and

Sxipper.

4.10 References

For more information, you can refer to the following:

• OpenID web site at http://openid.net

• Web site for this book at http://www.openidbook.com

• Conformix Technologies Inc. http://www.conformix.com

• OpenID presentation at http://openidbook.com/presentations/COLUG-

OpenID.pdf

• OpenID Blog at http://openid.blogspot.com

• OpenID information at http://www.openidenabled.com

• OpenID Libraries at http://openid.net/wiki/index.php/Libraries

• JanRain PHP Libraries at

http://www.openidenabled.com/openid/libraries/php

• SeatBelt Plug-in for Firefox browser at

http://beta.abtain.com/account/resources.jsp

 Page 137 of 247

• OpenID Graded Authorization sample application at

http://www.openidbook.com/knowledgebase

• Sxipper at http://www.sxipper.com/

 Page 138 of 247

Chapter Five

5 Running OpenID

Server

Now that you have already created your web site as Consumer, it is the time to

run your own Identity Server. If you are an individual user of OpenID, most

probably you don’t need to run your own OpenID server. There are so many free

OpenID servers already available on the Internet. However, if you are thinking

about using OpenID for your own service on the Internet or inside your

organization, running your own server may be a good idea.

Like OpenID libraries, there are multiple implementations of OpenID server in

different environments. In fact, JanRain OpenID library comes with sample

implementation of a server which can be used for understanding and testing.

However, for a real server, this example implementation is not enough because

 Page 139 of 247

you have to have a back-end database as well as a user interface where your users

can go and create new ID URLs.

The OpenID server should also implement the Yadis protocol used for service

discovery. Yadis helps OpenID clients to identify the available services and you

will look into Yadis in a little more detail in this chapter.

The main objective of this chapter is to set up a working server, show how clients

will work with this server, and show a database that works behind the scenes to

store information. You will also see detailed view of OpenID messages. For the

purpose of in-depth demonstration, we have used Wireshark

(http://www.wireshark.org) packet sniffer to capture HTTP packets flowing on

the network. These packets will show you how the OpenID protocol messages are

embedded in the HTTP packets.

In this chapter, we have used JanRain OpenID server version 1.1. We have used

sample consumer application that comes with JanRain OpenID API

implementation. The set up used in this chapter is as shown in Figure 5-1.

 Page 140 of 247

Figure 5-1: Set up used for OpenID server, Consumer, and User Agent.

The platform used for OpenID server (idp.conformix.com) is:

• Fedora Core 4

• MySQL version 4.1.20

• PHP version 5.0.4

• Apache version 2.0.54

 Page 141 of 247

The platform used for the consumer application (consumer.conformix.com) is:

• Fedora Core 6

• MySQL version 5.0.27

• PHP version 5.1.6

• Apache version 2.2.3

The End User is using a Microsoft Windows XP client with IE7 browser to login

to the Consumer application.

Other helping software used to set up the server correctly is Smarty

(http://smarty.php.net/) and we used version 2.6.18 for this. Also note that you

must have XML support on OpenID server and Consumer machines to handle

XML requests that are part of Yadis protocol.

5.1 PHP OpenID Server Installation

To install OpenID server, you have to have Apache (or some other web server)

installed. You would also need a database that the server can use to store data.

For this chapter, we are going to use Apache web server and MySQL database.

During installation, you will uncompress the server files and put them inside a

folder accessible by the web server.

We have configured a virtual web server to serve a sub-domain

idp.conformix.com.

5.1.1 Downloading and Extracting Files

Download the server tar file from

http://www.openidenabled.com/resources/downloads/php-server/PHP-server-

1.1.tar.gz. There may be a newer version available by the time you read this book.

 Page 142 of 247

Please note that all links are available at the book’s web site

http://www.openidbook.com where latest links are updated.

After downloading, extract files under the folder used by the virtual server, using

the following command.

tar zxvf PHP-server-1.1.tar.gz

This will extract all files. We have placed the extracted files under

/backup/openidbook folder. A number of sub-directories will be created when

you untar the source code. You can rename the folder as you wish, but you have

to enable access to the template_c folder to the account running the web server.

Use the following command for this purpose. Note that there are more secure

ways to achieve the same objective and this example is to use the simplest

method to get the server up and running (not recommended for a production

server).

chown apache.apache templates_c

When using other types of servers (other than Apache on Linux), the method to

set permissions may be different. Once you have set the permissions correctly, it

is the time to move to the next step.

5.1.2 Configuring Apache

Apache configuration is simple. We are creating a virtual host idp.conformix.com

that will be used as OpenID server. You can create a virtual host with a name of

your choice.

For creating a virtual server, you will add the following lines at the end of

/etc/httpd/conf/httpd/conf file.

 Page 143 of 247

<VirtualHost *:80>

 ServerAdmin webmaster@ipd.conformix.com

 DocumentRoot /backup/openidbook/srv

 ServerName idp.conformix.com

 ErrorLog logs/idp.conformix.com-error_log

 CustomLog logs/idp.conformix.com-access_log com mon

</VirtualHost>

Note that DocumentRoot points to /backup/openidbook/srv where OpenID

server source code is placed in the previous step.

Once you have saved the httpd.conf file, you have to restart the Apache server (or

send HUP signal) so that it reloads the configuration file. On Fedora Core 4, you

will use the following command to restart Apache.

/etc/init.d/httpd restart

After executing the above command, the Apache server is ready to accept

requests for http://idp.conformix.com.

5.1.3 Installing Smarty

Smarty (http://smarty.php.net) is a PHP package and is needed for PHP

templates for the OpenID server. Grab the latest version of Smarty, untar it and

then put the library files under /usr/local/lib/php/Smarty directory. Note that

you can use any other directory as long as it in under PHP path. To accomplish

this, you will use the following three commands.

tar zxvf Smarty-2.6.18.tar.gz

mkdir /usr/local/lib/php/Smarty

cp -r Smarty-2.6.18/libs/* /usr/local/lib/php/Smart y

 Page 144 of 247

Installing Smarty is complete once you have copied the library files as listed

above.

5.1.4 Install and Configure JanRain PHP OpenID Library

To run the JanRain OpenID server, you have to have the JanRain PHP library for

OpenID installed and configured properly. You can install the library anywhere

as long as it is accessible to PHP. We have installed it under /share/openidbook

directory.

First of all, download the library from

http://www.openidenabled.com/resources/downloads/php-openid/PHP-

openid-1.2.2.tar.gz which is the latest version at the time of writing this book.

Then use the tar command to extract files as follows:

tar zxvf PHP-openid-1.2.2.tgz

Once you have extracted file, you will put them in a directory and include the part

to the directory in /etc/php.ini file. Since we have placed it under

/backup/openidbook, we need to have the following line in /etc/php.ini file.

include_path = ".:/backup/openidbook:/usr/share/pea r"

I would recommend restarting the Apache server after making these changes to

the php.ini file.

5.1.5 Configuring MySQL Database

As mentioned previously, the OpenID server needs a database where it will store

its permanent as well as transient information. You just need to create the

database and a user that has appropriate privileges to the database. The OpenID

server will create tables in the database by itself.

To create the database, login as root and then you will use the “mysql -p”

command which will ask you to enter password for user root. Once you see the

 Page 145 of 247

“mysql>” prompt, then you can use the following three commands to create a

new database and a new user with sufficient privileges.

create database idpDB;

grant all privileges on idpDB.* to 'idpUser'@'local host' identified by

'idpPassword';

flush privileges;

The first command creates a database with name “idpDB”. The second command

creates a user “idpUser” with a password “idpPassword” and assigns privileges to

this user to manage the database. The third command forces the MySQL server to

re-reads privileges set by the second command30.

Once you have completed these tasks, the database is ready for use. The OpenID

server will create different tables in the database to:

• Store user information and their password so that all OpenID URL

holders can manage their accounts using the web interface.

• Information about trusted sites.

• Information about associations for OpenID smart mode. This information

will include shared keys associated with different Consumers.

• Session log information

There are other pieces of information that will be stored in the database and we

are going to provide details of different tables in the following pages in this

chapter.

30 For a production system, please consult your DBA to create database and set
appropriate privileges for the user.

 Page 146 of 247

5.1.6 Updating Configuration Files

The “src/config.php” file is the main configuration file for the OpenID server.

Major changes needed in this file are as follows:

1. Configuring database parameters including database host, database

name, username, and password

2. Configuring Smarty directory where Smarty library files and profiles are

present

3. Configure contact Email address which is displayed on user interface

4. Configuring the web site Title information

5. Configuring minimum username and password lengths

6. Whether to allow public user registration or not

7. Administrator username and password

8. Storage and authentication backend database

The sample configuration config.php file is as follows:

<?php

/**

 * The location of the Smarty templating system; se t this to the

 * directory that contains Smarty.class.php. Must end in a trailing

 * slash.

 */

define('SMARTY_DIR', '/usr/share/php/Smarty/');

/**

 * The site title; this will appear at the top and bottom of each

 * page, as well as in the browser title bar.

 */

 Page 147 of 247

define('SITE_TITLE', "OpenID Book Test Server");

/**

 * The administrator's email address. You may leav e this empty if you

 * wish. If empty, the "Contact (email address)" m essage will not

 * appear on every page footer.

 */

define('SITE_ADMIN_EMAIL', "rr@conformix.com");

/**

 * Minimum username length for account registration .

 */

define('MIN_USERNAME_LENGTH', 2);

/**

 * Minimum password length for account registration .

 */

define('MIN_PASSWORD_LENGTH', 6);

/**

 * Set this to true if you want to allow public Ope nID registration.

 * In either case, the ADMIN_USERNAME account speci fied below will be

 * able to log in to create and remove accounts.

 */

define('ALLOW_PUBLIC_REGISTRATION', true);

/**

 * Set these values for administrative access. Thi s account will be

 * able to create and remove accounts from the auth backend. This

 * username will not be permitted to use an OpenID. The password MUST

 * be an MD5 hexadecimal hash of the password you w ant to use.

 * Example:

 *

 * define('ADMIN_PASSWORD_MD5', '21232f297a57a5a743 894a0e4a801fc3');

 *

 */

define('ADMIN_USERNAME', 'admin');

define('ADMIN_PASSWORD_MD5', '');

 Page 148 of 247

/**

 * Storage backend to use. Currently the only choi ce is "MYSQL". See

 * storage.php for storage backend implementations. Parameters for

 * connecting to the storage backend. See storage. php if you want to

 * create your own backend.

 */

define('STORAGE_BACKEND', 'MYSQL');

global $storage_parameters;

$storage_parameters = array('username' => 'idpUser' ,

 'password' => 'idpPassw ord',

 'database' => 'idpDB',

 'hostspec' => 'localhos t');

/**

 * Authentication backend for authentication querie s. Default (and

 * only) choice is "MYSQL". See auth.php for backe nd implementations

 * if you want to create your own. This default se tting just puts the

 * authentication data in the same database with th e storage data

 * (above), so you probably don't need to adjust th is.

 */

define('AUTH_BACKEND', 'MYSQL');

global $storage_parameters;

$storage_parameters = array('username' => 'idpUser' ,

 'password' => 'idpPassw ord',

 'database' => 'idpDB',

 'hostspec' => 'localhos t');

/**

 * Authentication backend for authentication querie s. Default (and

 * only) choice is "MYSQL". See auth.php for backe nd implementations

 * if you want to create your own. This default se tting just puts the

 * authentication data in the same database with th e storage data

 * (above), so you probably don't need to adjust th is.

 */

define('AUTH_BACKEND', 'MYSQL');

global $auth_parameters;

$auth_parameters = $storage_parameters;

 Page 149 of 247

?>

Once you have updated this file, you are ready for testing the OpenID server as

explained next.

5.1.7 Testing Server

After configuring the OpenID server, you will test it using your browser. When

you visit the server URL for the first time, you will see something as shown in

Figure 5.2. Here you get the basic information about how to edit the main page

using template. Also note that contact email address and the server name are

present in the footer of the page. These items were configured in config.php file.

Figure 5-2: The welcome screen for the OpenID server.

In Figure 5.2, you can see some links at the top of the web page. The main links

are “Login” and “Register”. The first step would be to register a new user with the

server. When the account is created, the user will be assigned an OpenID URL

that can be used with any OpenID Consumer. When you click on “Register”, you

will see the screen shown in Figure 5.3 next.

 Page 150 of 247

Figure 5-3: New user registration with the OpenID server.

Note that in Figure 5-3, the registration process is very simple. You just enter

your user name, password and the CAPTCHA character string shown in the

image. Note that CAPTCHA is used to distinguish a real person from automated

scripts to stop attackers from creating large number of users using scripting

attacks.

Here we have registered as a user “openidbook”. This user account will be used to

manage our profile on this server. Note that this username or password will never

be sent to a Consumer web site.

Once the user registration process is complete, you will see a web page something

like shown in Figure 5-4. Everything related to creating a new OpenID URL is

complete now and your OpenID is ready for use. Your OpenID URL is:

http://idp.conformix.com/?user=openidbook

 Page 151 of 247

You can immediately start using this URL. However, if you chose to create your

own URL (on a different server) and use this server only for authentication

purposes, you will create an HTML page on your own URL with the following two

lines in the HEAD part of that HTML document.

<link rel=“openid.server” href=

“http://idp.conformix.com/index.php?serve”>

<link rel=“openid.delegate” href=

“http://idp.conformix.com/?user=openidbook”>

The first line will tell the Consumer the location of the OpenID server and the

second line will tell Consumer the OpenID that it needs to verify using that

server. This is the delegation process as you already know. The delegation

mechanism helps you keep the same ID when you change your OpenID provider.

For example, if you start using a new OpenID server for some reason (Your

OpenID provider goes out of business or their server is down for some reason),

you can keep your OpenID URL. If you don’t use delegation, your new OpenID

URL will be considered a different person by Consumers and you may lose access

to your old accounts.

 Page 152 of 247

Figure 5.4: Completion of your OpenID user registration process.

If you try to load the newly created OpenID URL

(http://idp.conformix.com/?user=openidbook) in your browser, you will see a

short message showing that this URL is identity URL. However, if you view the

“source” of the page displayed, it will be something as follows:

<html>

 <head>

 <link rel="openid.server"

href="http://idp.conformix.com/index.php/serve">

 <link rel="openid.delegate"

href="http://idp.conformix.com/?user=openidbook">

 </head>

 <body>

 <h3>OpenID Identity Page</h3>

 <p>

 Page 153 of 247

 This is the identity page for the user openidbook.

 </p>

 </body>

</html>

Note the two lines starting with “<link” (and shown in boldface) in the HEAD

section of the HTML page. These two lines show the server and the delegate

parts.

Now that you have created your OpenID on this server, it is the time to set some

parameters on this server. This is your profile, as shown in Figure 5-5. Note that

you can choose not to put any information in your profile or populate all fields.

When a Consumer requests your profile from the OpenID server, this

information may be delivered. It is up to the Consumer how it wants to use this

profile. For example, a Consumer may not grant you access if your nickname and

full name are not present in your profile. Other consumers may be interested only

in the authentication and may not care at all about optional information in your

profile.

Some Consumers may use information in your profile to grant you a certain level

of access (graded and risk based authentication) as discussed in previous chapter.

For example, a Consumer may allow you to make a payment on your insurance

policy if postal code, birth date, and email address are present and match your

record. If they don’t, it may allow you to only view (read-only) very basic

information about your insurance policy.

Please also note that servers can implement different profiles. Some servers will

allow you creating multiple profiles (e.g. pip.verisignlabs.com). Some servers will

even allow you to create custom profile such that you can create your own fields

in the profile. OpenID protocol is very open and flexible about how profiles are

handled. In Chapter One, an example was provided about how to create OpenID

profiles.

 Page 154 of 247

Figure 5-5: Creating OpenID profiles

The OpenID Consumer can request these additional parameters during the

authentication process as you will see later in this chapter. A Consumer can

request as many parameters it wants but it is up to the server about which

parameters it wants to return. This gives you, the real owner of the identity,

control over which information you want to send to a Consumer.

5.1.8 Testing Consumer with the Server

Now that you have created your OpenID URL, it can be tested using the sample

Consumer that you used in the previous chapter. The sample Consumer is

present at http://consumer.conformix.com and when you go to this Consumer

web site, you will see the familiar screen as shown in Figure 5-6. Here you will

use your newly created Identity URL to verify that the server is working properly.

Note that your identity URL is http://idp.conformix.com/?user=openidbook.

After entering this URL in the box, you will click on the “Verify” button.

 Page 155 of 247

Figure 5-6: Using the sample Consumer application to test new OpenID URL.

Once you click on the “Verify” button, the browser will show you the screen

shown in Figure 5-7 where you will chose if you want to allow this Consumer once

or forever. For this sake of this discussion, click on the “Allow Once” button. Note

that if you are not already logged into the OpenID server, you may also be asked

to login first (before you see this in browser).

Figure 5-7: List of optional parameters requested by the Consumer

The important thing to note about Figure 5-7 is the list of parameters in the

profile. You should observe the following things related to this screen:

 Page 156 of 247

• The server is requesting certain parameters in your profile. List of these

parameters will be shown here. The OpenID server is telling you which

parameters are being requested by the Consumer and giving you a choice

to decide which parameters should be sent to the Consumer. In this

example, only email address is being requested.

• In the first column, if you uncheck the checkbox, that parameter will not

be sent back to Consumer.

• The second column shows the name of the parameter. In this figure, you

can see that the Consumer is asking for Email address.

• The third column shows the value of the parameter. This value is taken

from the profile that you have already set on OpenID server. The value is

shown here so that you, as OpenID owner, can see what is being sent

back.

• The fourth column shows the status of the parameter request. The

“Optional” here means that the Consumer is requesting this parameter

but leaving it up to you to decide whether to send it or not. If a parameter

is not optional, the Consumer may decide not to authenticate you because

you did not send the parameters requested. A Consumer may also give

you a lower level of access. However, it is up to the Consumer to take

whatever action it wants to take, OpenID does not dictate specific actions.

These optional parameters are part of the OpenID protocol extensions call

“Simple Registration” and you will find detailed information about this and other

extensions later in this book.

Once you have clicked on “Allow Once” button, the authentication will be

complete and you will see success result as shown in Figure 5-8.

 Page 157 of 247

Figure 5-8: Confirmation of OpenID authentication.

If authentication fails, you may see a failure message as well. Note that the

sample Consumer shows only success or failure. A real Consumer will do some

other tasks based upon results of authentication success or failure. A real

Consumer web site will either take you back to login page or show you some

additional information related to your account.

If you select a web site to be “Trusted Forever” such that you don’t have to

authorize the use of OpenID every time the Consumer requests an authentication,

the server and consumer will keep a shared secret. In that case, the server will

show this site as trusted as shown in Figure 5-9. This is shown when you click on

“Sites” link on the top bar of the server.

Figure 5-9: Trusted web site list maintained by OpenID server.

 Page 158 of 247

Note that once a web site becomes trusted, the OpenID server will authenticate

you with the web site without prompting you for optional parameters.

Note that you can also remove a previously trusted web site from the list. Once

you remove it, it becomes un-trusted once again.

You can use the “Deny” button as shown in Figure 5-9 to remove a Consumer web

site from trusted list.

5.1.9 Database Changes during Server Configuration

During the server installation, you created a database where the server could

store its information. This section provides information about this database in a

little more detail. I would like to emphasize that a reader should take this

database as an example. Different server implementations may have different

database schemas. They also may chose to store a different set of information

than listed here. The database should still provide a good foundation about the

interworking of an OpenID server and how information is stored and used.

First of all, let us have a look at the database tables. All of these tables are created

by the server itself using the information provided in the config.php file. The

database specific information in the config.php file includes:

• The database name

• The hostname where database is located

• The username and password to access the database

Using this information, the following tables are automatically created by the

OpenID server. We are using “show tables” command to display list of all tables.

Note that to fully understand this section, you should have some knowledge of

MySQL database commands.

mysql> show tables;

 Page 159 of 247

+------------------+

| Tables_in_idpDB |

+------------------+

| accounts |

| identities |

| oid_associations |

| oid_nonces |

| oid_settings |

| personas |

| personas_id_seq |

| sites |

+------------------+

8 rows in set (0.00 sec)

mysql>

Different pieces of information are stored in different tables. Let us look at all of

these tables one by one. First of all, the accounts table stores all user accounts.

The id field is just an identifier number. The username field shows the login

name for a user. Passwords are stored in hashed form. The following command

shows two users and their passwords in hashed form.

This table is used to login to the OpenID server. Once a user is logged in, he/she

can carry out other tasks related to ID management.

mysql> select * from accounts;

+----+------------+-------------------------------- --+

| id | username | password |

+----+------------+-------------------------------- --+

| 1 | rurehman | 1c0ada6386ca9d746a486bb27af1022 8 |

| 2 | openidbook | 4701125c06b2ba8ea0cfe58909ccff0 1 |

+----+------------+-------------------------------- --+

2 rows in set (0.00 sec)

mysql>

 Page 160 of 247

The following command shows all identities stored in the database. Each identity

corresponds to a username in the accounts table.

When a Consumer requests for authentication and sends a URL, this is the table

where the server will look into to find which user owns that URL. Once the server

know the owner of the URL, it will check if a site is trusted or not and take

different actions accordingly.

mysql> select * from identities;

+----+------------+-------------------------------- ----------------+

| id | account | url

|

+----+------------+-------------------------------- ----------------+

| 1 | rurehman | http://idp.conformix.com/?user= rurehman

|

| 2 | openidbook | http://idp.conformix.com/?user= openidbook

|

+----+------------+-------------------------------- ----------------+

2 rows in set (0.00 sec)

mysql>

The oid_associations table holds shared secrets with different Consumers. In

addition to shared key, it also stores the association type, association handle,

timestamp when the shared secret was created and a lifetime for the shared

secret. Once the lifetime of the shared secret is over, a new association will be

established between a Consumer and OpenID Server. The following listing shows

two entries in this table.

mysql> select * from oid_associations;

+--------------------------+----------------------- ----------+-----------

-----------+------------+----------+------------+

| server_url | handle | secret

| issued | lifetime | assoc_type |

+--------------------------+----------------------- ----------+-----------

-----------+------------+----------+------------+

 Page 161 of 247

| http://localhost/|normal | {HMAC-SHA1}{460709e5}{ /Qw2uA==} | e @ |

1174866405 | 1209600 | HMAC-SHA1 |

| http://localhost/|normal | {HMAC-SHA1}{46071e25}{ Tt8MwQ==} | |

1174871589 | 1209600 | HMAC-SHA1 |

+--------------------------+----------------------- ----------+-----------

-----------+------------+----------+------------+

2 rows in set (0.01 sec)

mysql>

The personas table stores profile for users. The following listing shows two user

profiles. Note that optionally you can set you profiles and each element in a

profile can be used to fulfill requests from a Consumer web site during the

authentication process.

mysql> select * from personas;

+----+------------+----------+------------------+-- -------------+--------

----+--------+----------+---------+----------+----- -----+

| id | account | nickname | email | f ullname | dob

| gender | postcode | country | language | timezone |

+----+------------+----------+------------------+-- -------------+--------

----+--------+----------+---------+----------+----- -----+

| 1 | rurehman | rr | rr@conformix.com | R afeeq Rehman | 0000-

00-00 | | | | | |

| 2 | openidbook | rr | rr@conformix.com | R afeeq Rehman | 0000-

00-00 | | | | EN | |

+----+------------+----------+------------------+-- -------------+--------

----+--------+----------+---------+----------+----- -----+

2 rows in set (0.00 sec)

mysql>

The sites table keeps record of trusted or non trusted Consumer web sites. The

following list shows two Consumer web sites and both web sites are not trusted.

 Page 162 of 247

Note that a Consumer web site becomes “trusted” when you click on “Allow

Forever” button in Figure 5-7.

mysql> select * from sites;

+------------+------------------------------------- -------+---------+

| account | trust_root |

trusted |

+------------+------------------------------------- -------+---------+

| openidbook | http://idp.conformix.com:80/examples /consumer |

0 |

| openidbook | http://consumer.conformix.com:80/con sumer |

0 |

+------------+------------------------------------- -------+---------+

2 rows in set (0.01 sec)

mysql>

5.1.10 Database Table Description

In this section, the describe MySQL command output is shown so that you can

get a quick overview of the type of information that goes into different tables. All

user commands are shown in boldface.

If you are implementing your own OpenID server, you can create your own

database schema and decide which information to store.

mysql> describe accounts ;

+----------+--------------+------+-----+---------+- ---------------+

| Field | Type | Null | Key | Default | Extra |

+----------+--------------+------+-----+---------+- ---------------+

| id | int(11) | | PRI | NULL | auto_increment |

| username | varchar(255) | YES | MUL | NULL | |

| password | varchar(32) | YES | | NULL | |

+----------+--------------+------+-----+---------+- ---------------+

3 rows in set (0.00 sec)

 Page 163 of 247

mysql>

mysql> describe identities ;

+---------+--------------+------+-----+---------+-- --------------+

| Field | Type | Null | Key | Default | E xtra |

+---------+--------------+------+-----+---------+-- --------------+

| id | int(11) | | PRI | NULL | a uto_increment |

| account | varchar(255) | | MUL | | |

| url | text | | | | |

+---------+--------------+------+-----+---------+-- --------------+

3 rows in set (0.00 sec)

mysql>

mysql> describe oid_associations ;

+------------+--------------+------+-----+--------- +-------+

| Field | Type | Null | Key | Default | Extra |

+------------+--------------+------+-----+--------- +-------+

| server_url | blob | | PRI | | |

| handle | varchar(255) | | PRI | | |

| secret | blob | YES | | NULL | |

| issued | int(11) | YES | | NULL | |

| lifetime | int(11) | YES | | NULL | |

| assoc_type | varchar(64) | YES | | NULL | |

+------------+--------------+------+-----+--------- +-------+

6 rows in set (0.00 sec)

mysql>

mysql> describe oid_nonces ;

+---------+---------+------+-----+---------+------- +

| Field | Type | Null | Key | Default | Extra |

+---------+---------+------+-----+---------+------- +

| nonce | char(8) | | PRI | | |

| expires | int(11) | YES | | NULL | |

+---------+---------+------+-----+---------+------- +

2 rows in set (0.00 sec)

mysql>

mysql> describe oid_settings ;

+---------+--------------+------+-----+---------+-- -----+

 Page 164 of 247

| Field | Type | Null | Key | Default | E xtra |

+---------+--------------+------+-----+---------+-- -----+

| setting | varchar(128) | | PRI | | |

| value | blob | YES | | NULL | |

+---------+--------------+------+-----+---------+-- -----+

2 rows in set (0.00 sec)

mysql>

mysql> describe personas ;

+----------+--------------+------+-----+---------+- ---------------+

| Field | Type | Null | Key | Default | Extra |

+----------+--------------+------+-----+---------+- ---------------+

| id | int(11) | | PRI | NULL | auto_increment |

| account | varchar(255) | | | | |

| nickname | varchar(255) | YES | | NULL | |

| email | varchar(255) | YES | | NULL | |

| fullname | varchar(255) | YES | | NULL | |

| dob | date | YES | | NULL | |

| gender | char(1) | YES | | NULL | |

| postcode | varchar(255) | YES | | NULL | |

| country | varchar(32) | YES | | NULL | |

| language | varchar(32) | YES | | NULL | |

| timezone | varchar(255) | YES | | NULL | |

+----------+--------------+------+-----+---------+- ---------------+

11 rows in set (0.00 sec)

mysql>

mysql> describe personas_id_seq ;

+-------+------------------+------+-----+---------+ ----------------+

| Field | Type | Null | Key | Default | Extra |

+-------+------------------+------+-----+---------+ ----------------+

| id | int(10) unsigned | | PRI | NULL | auto_increment |

+-------+------------------+------+-----+---------+ ----------------+

1 row in set (0.00 sec)

mysql>

mysql> describe sites ;

+------------+--------------+------+-----+--------- +-------+

 Page 165 of 247

| Field | Type | Null | Key | Default | Extra |

+------------+--------------+------+-----+--------- +-------+

| account | varchar(255) | | MUL | | |

| trust_root | text | YES | | NULL | |

| trusted | tinyint(1) | YES | | NULL | |

+------------+--------------+------+-----+--------- +-------+

3 rows in set (0.00 sec)

mysql>

From these tables, you have an idea about data types used for different fields and

length of these fields.

5.2 Deep Dive into OpenID Protocol: Dumb Mode

Having a good understanding of the OpenID server and the database used behind

it, the next step is to have an in-depth understanding of different OpenID

protocol messages. For this purpose, I have used Wireshark

(http://www.wireshark.org) as packet sniffer to capture real data on the network.

After filtering this data for relevant messages, this section will go into detail of

these messages and how these are exchanged. This section will also provide good

information for troubleshooting of the protocol problem when you run your own

server or for debugging software problems. Note that only HTTP part of the

packet is shown to save space and all other information is stripped off. I have also

“decoded” HTTP characters to show the protocol information more clearly.

Note that I have used HTTP protocol on port 80. This was to capture packets

without any encryption. It is strongly recommended to use HTTPS (port 443) for

all OpenID transactions to encrypt the transport layer.

 Page 166 of 247

5.2.1 Yadis and XRD Document

As mentioned in earlier chapters, Yadis is used as a first step by Consumers to

discover services. The following packet shows a request going from the Consumer

to the OpenID Server. The request was initiated with OpenID URL

http://idp.conformix.com/?user=openidbook

GET /?user=openidbook HTTP/1.1Host: idp.conformix.c om Accept:

application/xrds+xml

When the OpenID Server received this request, it returned an XRD document.

XRD is an XML document that shows services provided by the server. The

response to the GET request is as follows:

HTTP/1.1 200 OK

Date: Mon, 26 Mar 2007 01:14:38 GMT

Server: Apache/2.0.54 (Fedora)

X-Powered-By: PHP/5.0.4

Set-Cookie: PHPSESSID=70rdu7mmk9nljmh7acoa7pud84

Expires: Thu, 19 Nov 1981 08:52:00 GMT

Cache-Control: no-store, no-cache, must-revalidate, post-check=0, pre-

check=0

Pragma: no-cache

Content-Length: 482

Connection: close

Content-Type: application/xrds+xml

<?xml version="1.0" encoding="UTF-8"?>

<xrds:XRDS

 xmlns:xrds="xri://$xrds"

 xmlns:openid="http://openid.net/xmlns/1.0"

 xmlns="xri://$xrd*($v*2.0)">

 <XRD>

 <Service>

 <Type>http://openid.net/signon/1.1</Type>

 <Type>http://openid.net/sreg/1.0</Type>

 <URI>http://idp.conformix.com/index.php/serve </URI>

 Page 167 of 247

<openid:Delegate>http://idp.conformix.com/?user=ope nidbook</openid:Delega

te>

 </Service>

 </XRD>

</xrds:XRDS>

You should note the following about this XML document.

• The document starts with XRDS node.

• There may be multiple “Service” elements in the document inside the

XRD node.

• There may be multiple “Type” elements in this document inside each

“Service” element. Note that there are two services listed in this

document. The first line shows the Authentication (signon) service, while

the second line shows Simple Registration (sreg) service. You will get

more information about the Simple Registration service in Chapter 6.

Note that if XRD discovery fails, then the Consumer will use the HTML based

discovery using HEAD part of the retrieved document.

5.2.2 Indirect communication between Consumer and

Identity Provider

Once this information is found from idp.conformix.com by the Consumer, the

Consumer will analyze it using Yadis to determine if the Server can provide

OpenID service. After the Consumer has analyzed the XRD document and knows

that the server can serve the OpenID requests, it sends the request (shown in the

next listing) to the Server using Browser redirection. Note that HTTP 302

message is used for redirection as shown in the sniffer output next. Figure 5-2

shows the direction of request and response messages and message types.

 Page 168 of 247

Figure 5-9: Request and response messages between IdP and Consumer

This request has a number of parameters in it. Have a look on the actual request

first and then we shall discuss these parameters. Note that after capturing it

using Wireshark, it has been decoded for clarity purposes (encoded HTTP

requests have a number of HEX encoded character with % sign in front of them).

HTTP/1.1 302 Found

Date: Mon, 26 Mar 2007 01:16:42 GMT

Server: Apache/2.2.3 (Fedora)

X-Powered-By: PHP/5.1.6

Expires: Thu, 19 Nov 1981 08:52:00 GMT

Cache-Control: no-store, no-cache, must-revalidate, post-check=0, pre-

check=0

Pragma: no-cache

Location:

http://idp.conformix.com/index.php/serve?openid.ass oc_handle={HMAC-

SHA1}{46071e25}{Tt8MwQ==}&openid.identity=http://id p.conformix.com/?user=

openidbook&openid.mode=checkid_setup&openid.return_ to=http://consumer.con

 Page 169 of 247

formix.com:80/finish_auth.php?nonce=nC5sKquX&openid .sreg.optional=email&o

penid.trust_root=http://consumer.conformix.com:80/

Content-Length: 0

Connection: close

Content-Type: text/html; charset=UTF-8

You should note the following things about the above request. The first thing to

note is that it is a redirect message to the web browser.

• It has a redirection URL that enables the web browser to forward the

request to the OpenID server. This URL in the above request is shown

after keyword “Location:” and is

http://idp.conformix.com/index.php/serve. Note that I have removed all

of the query string from this URL. The query string actually contains

different protocol parameters.

• The parameters are passed as GET request (using query string), so it is

important to have the OpenID URL with HTTPS protocol, instead of plain

HTTP.

• Names of all parameters are preceded by keyword openid which is part of

OpenID specifications version 2.0. This helps in identifying an OpenID

protocol parameter from any other parameter.

• The first parameter, openid.assoc_handle={HMAC-

SHA1}{46071e25}{Tt8MwQ==}, shows the association handle and

encryption method used.

• The second parameter,

openid.identity=http://idp.conformix.com/?user=openidbook, shows the

identity that the Consumer is trying to validate.

• The third parameter, openid.mode=checkid_setup, shows the message

type.

 Page 170 of 247

• The fourth parameter,

openid.return_to=http://consumer.conformix.com:80/finish_auth.php,

shows the URL where the OpenID server should redirect the browser back

after validating the ID. Note that when the server replies back, it will use

this URL with some additional query string parameters attached.

• The fifth parameter, nonce=nC5sKquX is used to prevent relay attacks. It

has a timestamp encoded in it.

• The sixth parameter, openid.sreg.optional=email, is used to request an

optional item from the server: the email address. Note that a Consumer

can request any additional items. The OpenID server may decide which of

these to send back or not.

• The seventh parameter,

openid.trust_root=http://consumer.conformix.com:80/, shows the URL

for the Consumer web site. In case the ID owner wants to mark this web

site as trusted one for future authentication, this URL can be saved by the

OpenID server.

Once browser has received the redirect message from the Consumer, it sends

HTTP GET message to idp.conformix.com (IdP). This message is as shown below.

Note that the “GET” part of this message is the same as the “Location” part in the

previous listing.

GET /index.php/serve?openid.assoc_handle={HMAC-

SHA1}{46071e25}{Tt8MwQ==}&openid.identity=http://id p.conformix.com/?user=

openidbook&openid.mode=checkid_setup&openid.return_ to=http://consumer.con

formix.com:80/finish_auth.php?nonce=nC5sKquX&openid .sreg.optional=email&o

penid.trust_root=http://consumer.conformix.com:80/ HTTP/1.1

Accept: image/gif, image/x-xbitmap, image/jpeg, ima ge/pjpeg,

application/x-shockwave-flash, application/vnd.ms-e xcel,

application/vnd.ms-powerpoint, application/msword, */*

 Page 171 of 247

Referer:

http://consumer.conformix.com/finish_auth.php?nonce =ZwgGkLwy&openid.assoc

_handle={HMAC-

SHA1}{46071e25}{Tt8MwQ==}&openid.identity=http://id p.conformix.com/?user=

openidbook&openid.mode=id_res&openid.return_to=http ://consumer.conformix.

com:80/finish_auth.php?nonce=ZwgGkLwy&openid.sig=bL XPr2BJtj4M/vVGyhY0uZjv

oHQ=&openid.signed=mode,identity,return_to,sreg.ema il&openid.sreg.email=r

r@conformix.com

Accept-Language: en-us

UA-CPU: x86

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Wind ows NT 5.1; .NET CLR

1.1.4322; .NET CLR 2.0.50727)

Cookie: PHPSESSID=94tee0m8oflcsvf49rkv0l0tu1;

PHPSESSID=94tee0m8oflcsvf49rkv0l0tu1

Connection: Keep-Alive

Host: idp.conformix.com

After receiving this message, the OpenID server will process the request and send

the result back.

5.2.3 Identity Provider Asks User for Authentication to IdP

Note that the Identity Provider may ask the End User to authenticate before it

replies back to the Consumer with an assertion. Depending upon

implementation, there may be multiple mechanisms to accomplish this. In the

following packet capture, the Identity Provider simply redirects the browser to

verify the trust relationship. There may be a login page or some other mechanism

as well.

The following is redirect message from the Identity Provider to the web browser.

Note that Identity Provider is redirecting the browser to one of its own pages.

HTTP/1.1 302 Found

Date: Mon, 26 Mar 2007 01:14:38 GMT

 Page 172 of 247

Server: Apache/2.0.54 (Fedora)

X-Powered-By: PHP/5.0.4

Set-Cookie: PHPSESSID=94tee0m8oflcsvf49rkv0l0tu1

Expires: Thu, 19 Nov 1981 08:52:00 GMT

Cache-Control: no-store, no-cache, must-revalidate, post-check=0, pre-

check=0

Pragma: no-cache

Location: http://idp.conformix.com/?action=trust

Content-Length: 0

Connection: close

Content-Type: text/html; charset=UTF-8

The following packet capture shows the web Browser redirect back to Identity

Provider. Basically it is sending back a Cookie.

GET /?action=trust HTTP/1.1

Accept: image/gif, image/x-xbitmap, image/jpeg, ima ge/pjpeg,

application/x-shockwave-flash, application/vnd.ms-e xcel,

application/vnd.ms-powerpoint, application/msword, */*

Referer:

http://consumer.conformix.com/finish_auth.php?nonce =ZwgGkLwy&openid.assoc

_handle={HMAC-

SHA1}{46071e25}{Tt8MwQ==}&openid.identity=http://id p.conformix.com/?user=

openidbook&openid.mode=id_res&openid.return_to=http ://consumer.conformix.

com:80/finish_auth.php?nonce=ZwgGkLwy&openid.sig=bL XPr2BJtj4M/vVGyhY0uZjv

oHQ=&openid.signed=mode,identity,return_to,sreg.ema il&openid.sreg.email=r

r@conformix.com

Accept-Language: en-us

UA-CPU: x86

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Wind ows NT 5.1; .NET CLR

1.1.4322; .NET CLR 2.0.50727)

Cookie: PHPSESSID=94tee0m8oflcsvf49rkv0l0tu1

Connection: Keep-Alive

Host: idp.conformix.com

 Page 173 of 247

5.2.4 Identity Provider’s Positive Assertion to Consumer

After the End User’s authentication to the Identity Provider is established, the

IdP sends the following packet back to Browser to redirect it back to the

Consumer web site. This packet contains a successful assertion for the Consumer.

HTTP/1.1 302 Found

Date: Mon, 26 Mar 2007 01:14:40 GMT

Server: Apache/2.0.54 (Fedora)

X-Powered-By: PHP/5.0.4

Set-Cookie: PHPSESSID=94tee0m8oflcsvf49rkv0l0tu1

Expires: Thu, 19 Nov 1981 08:52:00 GMT

Cache-Control: no-store, no-cache, must-revalidate, post-check=0, pre-

check=0

Pragma: no-cache

location:

http://consumer.conformix.com:80/finish_auth.php?no nce=nC5sKquX&openid.as

soc_handle={HMAC-

SHA1}{46071e25}{Tt8MwQ==}&openid.identity=http://id p.conformix.com/?user=

openidbook&openid.mode=id_res&openid.return_to=http ://consumer.conformix.

com:80/finish_auth.php?nonce=nC5sKquX&openid.sig=nX Wc+07GLaSf+RghmGubGPPg

lZc=&openid.signed=mode,identity,return_to,sreg.ema il&openid.sreg.email=r

r@conformix.com

Connection: close

Content-Length: 0

Content-Type: text/html; charset=UTF-8

You should note the following about this packet.

• The “location:http://consumer.conformix.com:80/finish_auth.php” part

directs the browser where it should send the redirection. There are a

number of query string parameters that we shall discuss next.

• The “nonce=nC5sKquX” parameter shows the nonce value discussed

earlier and it is used to prevent relay attacks.

 Page 174 of 247

• The “openid.assoc_handle={HMAC-SHA1}{46071e25}{Tt8MwQ==}”

shows the association handle. If the Consumer already has as association

established, it can use this handle to verify the authenticity of this

message.

• The “openid.identity=http://idp.conformix.com/?user=openidbook”

parameter shows the identity that is being established using this protocol.

• The “openid.mode=id_res” shows the message type as discussed in

Chapter 3.

• The

“openid.return_to=http://consumer.conformix.com:80/finish_auth.php

” is a copy of the original parameter that was present in the request.

• The “openid.sig=nXWc+07GLaSf+RghmGubGPPglZc=” shows the digital

signature.

• The “openid.signed=mode,identity,return_to” shows which parameters

are signed when calculating value of the openid.sig parameter.

• The “openid.sreg.email=rr@conformix.com” shows the optional

parameter email parameter that was requested by the Consumer.

After receiving this redirect message from the Identity Provider, the web browser

sends the following message to the Consumer which completes indirect

communication.

GET /finish_auth.php?nonce=nC5sKquX&openid.assoc_ha ndle={HMAC-

SHA1}{46071e25}{Tt8MwQ==}&openid.identity=http://id p.conformix.com/?user=

openidbook&openid.mode=id_res&openid.return_to=http ://consumer.conformix.

com:80/finish_auth.php?nonce=nC5sKquX&openid.sig=nX Wc+07GLaSf+RghmGubGPPg

lZc=&openid.signed=mode,identity,return_to,sreg.ema il&openid.sreg.email=r

r@conformix.com HTTP/1.1

 Page 175 of 247

Accept: image/gif, image/x-xbitmap, image/jpeg, ima ge/pjpeg,

application/x-shockwave-flash, application/vnd.ms-e xcel,

application/vnd.ms-powerpoint, application/msword, */*

Referer: http://idp.conformix.com/?action=trust

Accept-Language: en-us

UA-CPU: x86

Accept-Encoding: gzip, deflate

User-Agent: Mozilla/4.0 (compatible; MSIE 7.0; Wind ows NT 5.1; .NET CLR

1.1.4322; .NET CLR 2.0.50727)

Host: consumer.conformix.com

Cookie: PHPSESSID=og3ln8j9bcr157qgn7a97nm0i0

Connection: Keep-Alive

Cache-Control: no-cache

The “finish_auth.php” file will process all of the information contained in this

message and will complete the authentication process after verification as

discussed next.

5.2.5 Verification between Consumer and Identity Provider

using check_authentication Message

The Consumer has to verify this assertion from the Identity Provider to avoid any

attacks from malicious entities. The mechanism to verify the assertion is the

check_authentication message. The Consumer sends all parameters that it

received from the Identity Provider via checkid_setup or checkid_immediate

messages using indirect communication. The check_authentication is a direct,

out of band, communication between the Consumer and the Identity Provider.

For all direct communication, HTTP POST method is used. Following is a typical

check_authentication message.

POST /index.php/serve HTTP/1.1

Host: idp.conformix.com

Accept: */*

Content-Length: 519

Content-Type: application/x-www-form-urlencoded

 Page 176 of 247

openid.assoc_handle={HMAC-

SHA1}{460730e1}{zr1gKg==}&openid.identity=http://id p.conformix.com/?user=

openidbook&openid.invalidate_handle={HMAC-

SHA1}{46071e25}{Tt8MwQ==}&openid.mode=check_authent ication&openid.return_

to=http://consumer.conformix.com:80/finish_auth.php ?nonce=mAotRbGM&openid

.sig=4hwwyWbPtSAmP2dYxEC+dq605Os=&openid.signed=mod e,identity,return_to,s

reg.email&openid.sreg.email=rr@conformix.com

Once the Identity provider has received this message, it will determine the

validity of the assertion and reply back with a “yes” or “no” answer as shown

below. Note that the “is_valid” parameter at the end of the following output

shows the success or failure of an assertion.

HTTP/1.1 200 OK

Date: Mon, 26 Mar 2007 02:33:05 GMT

Server: Apache/2.0.54 (Fedora)

X-Powered-By: PHP/5.0.4

Set-Cookie: PHPSESSID=9mpri62iipjojam625rh0kalt2

Expires: Thu, 19 Nov 1981 08:52:00 GMT

Cache-Control: no-store, no-cache, must-revalidate, post-check=0, pre-

check=0

Pragma: no-cache

Connection: close

Content-Length: 64

Content-Type: text/html; charset=UTF-8

invalidate_handle:{HMAC-SHA1}{46071e25}{Tt8MwQ==}

is_valid:true

Once the Consumer has received this success message, the authentication process

is complete. The consumer can then allow the End User to login to the Consumer

web site. The Consumer can also take other actions. For example, if the Identity

Provider did not return all of the parameters that the Consumer had requested, it

may grant lesser level of access to data. If a user has logged into the Consumer

web site the first time, the Consumer may also go through a registration process.

The bottom line is that the Consumer actions after the authentication process is

 Page 177 of 247

complete are out of the scope of the OpenID protocol. Depending upon how the

Consumer web site is programmed, you may see different behavior.

5.2.6 Authentication Completion

In the sample Consumer web site used for the purpose of testing the OpenID

server, the Consumer does not do anything and it just displays a success message

in the Web Browser. Following is the HTML code of this page which is included

here only for the sake of completeness; otherwise there is nothing special about

this.

HTTP/1.1 200 OK Date: Mon, 26 Mar 2007 01:16:45 GMT Server: Apache/2.2.3

(Fedora)X-Powered-By: PHP/5.1.6Expires: Thu, 19 Nov 1981 08:52:00 GMT

Cache-Control: no-store, no-cache, must-revalidate, post-check=0, pre-

check=0Pragma: no-cache Content-Length: 1610Connect ion: close Content-

Type: text/html; charset=UTF-8

<html>

 <head><title>PHP OpenID Authentication Example</t itle></head>

 <style type="text/css">

 * {

 font-family: verdana,sans-serif;

 }

 body {

 width: 50em;

 margin: 1em;

 }

 div {

 padding: .5em;

 }

 table {

 margin: none;

 padding: none;

 }

 .alert {

 border: 1px solid #e7dc2b;

 background: #fff888;

 }

 Page 178 of 247

 .success {

 border: 1px solid #669966;

 background: #88ff88;

 }

 .error {

 border: 1px solid #ff0000;

 background: #ffaaaa;

 }

 #verify-form {

 border: 1px solid #777777;

 background: #dddddd;

 margin-top: 1em;

 padding-bottom: 0em;

 }

 </style>

 <body>

 <h1>PHP OpenID Authentication Example</h1>

 <p>

 This example consumer uses the PHP

 OpenID library. It just verifies that the URL that you enter

 is your identity URL.

 </p>

 <div class="success">You have successfu lly verified ht tp://idp.conformix.com

/?user=openidbook as your identity. You also r eturned

'rr@conformix.com' as your email.</div>

 <div id="verify-form">

 <form method="get" action="try_auth.php">

 Identity URL:

 <input type="hidden" name="action" value="v erify" />

 <input type="text" name="openid_url" value= "" />

 <input type="submit" value="Verify" />

 </form>

 </div>

 </body>

</html>

 Page 179 of 247

A more realistic web site will show something different than this page depending

upon success of failure of the authentication process.

5.3 OpenID Association Messages

All messages discussed in the previous section used Dumb mode of

communication. In Smart mode of communication, association is established

between the Consumer web site and the Identity Provider. This section shows the

process of establishing this association.

The association process is initiated by the Consumer using a direct

communication message called “associate”. This is HTTP POST method with a

number of parameters. There parameters were discussed in Chapter 3 and here

you will see a real example about how these parameters are used for establishing

association.

Following example shows an “association request” request message going from

the Consumer web site to the Identity Provider.

POST /index.php/serve HTTP/1.1

Host: idp.conformix.com

Accept: */*

Content-Length: 504

Content-Type: application/x-www-form-urlencoded

openid.mode=associate&openid.assoc_type=HMAC-SHA1&o penid.session_type=DH-

SHA1&openid.dh_consumer_public=KC6IpA00A6SlCikafFSl rTGql9H8+de6GFi5YLKz4p

yDxUMS5Z8pMOm/Ptr1gFmCcgAXjFbuxS73ZutDTFJYpADoIntFV rah9eaezMcw6SDR24cnFjN

c14xq0zGt3QcRLXaNTRVKfMW8evDAmLCrvEhU5c7B3eqmk+bMMrbQpcE=&openid.dh_modul

us=ANz5OguIOXLsDhmYmsWizjEOHTdxfo2Vcbt2I3MYZuYe91ou J4mLBX+YkcLiemOcPym2CB

RYHNOyyjmG0mg3BVd9RcLn5S3IHHoXGHblzqdLFEi/368Ygo79J RnxTkXjgmY0rxlJ5bU1zIK

aSDuKdiI+XUkKJX8Fvf8W8vsixYOr&openid.dh_gen=Ag==

The above message contains the following parameters.

 Page 180 of 247

• The “openid.mode=associate” shows that this is an association request

message.

• The “openid.assoc_type=HMAC-SHA1” shows that the Consumer is

asking for HMAC-SHA1 type of association. If the OpenID Server does not

support this type of association, the association may fail.

• The “openid.session_type=DH-SHA1” shows the Diffie-Hellman key

exchange mechanism being used for this association. Again if the OpenID

Server does not support this, the association may fail.

• The consumer public key is rather a long string which is shown above as

“openid.dh_consumer_public=KC6IpA00A6SlCikafFSlrTGql9H8+de6GF

i5YLKz4pyDxUMS5Z8pMOm/Ptr1gFmCcgAXjFbuxS73ZutDTFJYpADoIn

tFVrah9eaezMcw6SDR24cnFjNc14xq0zGt3QcRLXaNTRVKfMW8evDAm

LCrvEhU5c7B3eqmk+bMMrbQpcE=”

• The modulus is shown as

“openid.dh_modulus=ANz5OguIOXLsDhmYmsWizjEOHTdxfo2Vcbt2I3

MYZuYe91ouJ4mLBX+YkcLiemOcPym2CBRYHNOyyjmG0mg3BVd9RcL

n5S3IHHoXGHblzqdLFEi/368Ygo79JRnxTkXjgmY0rxlJ5bU1zIKaSDuK

diI+XUkKJX8Fvf8W8vsixYOr”

Note that both the Consumer and the OpenID server must have a mechanism to

store the association handle and related parameters in some way. Most of the

times, this is a database table or a file residing on a file system.

Following is the association response from the Identity Provider to the Consumer

web site. Note that it contains the association handle.

HTTP/1.1 200 OK Date: Mon, 26 Mar 2007 02:47:37 GMT Server: Apache/2.0.54

(Fedora)X-Powered-By: PHP/5.0.4Set-Cookie:

PHPSESSID=f37bm9q0o8n2ahq2qupuk6q9s6Expires: Thu, 1 9 Nov 1981 08:52:00

GMT Cache-Control: no-store, no-cache, must-revalid ate, post-check=0,

 Page 181 of 247

pre-check=0Pragma: no-cache Connection: close Conte nt-Length: 337Content-

Type: text/html; charset=UTF-8

assoc_handle:{HMAC-SHA1}{4607344a}{oDFF0g==}

assoc_type:HMAC-SHA1

dh_server_public:AIPkx6xJ3b1Wnr1olWL7suoZnABDc+lJRR 9DeNIBolGXQX3W2e+4udY2

p+dUcF5jKE6uoZuXLVPbimHbndBOYhUDUfkKaAjQtVvONerAjd5 RHyt2i2AoYrkjD26traC4j

zg7NukZlmrRjfPRg4q3gwW+EZEXvz+ba9JnQfsXx+iH

enc_mac_key:UtQHBswQimAZAp4s/9sfSQSpuq0=

expires_in:1209600

session_type:DH-SHA1

You should note the following important things about the above listing, which is

the association response from the Identity Provider.

• The response include association handle that will be used for future

communication between Consumer and Identity Provider. This handle is

“assoc_handle:{HMAC-SHA1}{4607344a}{oDFF0g==}”.

• The message also includes the OpenID server’s public key which is used in

Diffie-Hellman key exchange method. This is

“dh_server_public:AIPkx6xJ3b1Wnr1olWL7suoZnABDc+lJRR9DeNIBol

GXQX3W2e+4udY2p+dUcF5jKE6uoZuXLVPbimHbndBOYhUDUfkKaAj

QtVvONerAjd5RHyt2i2AoYrkjD26traC4jzg7NukZlmrRjfPRg4q3gwW+EZ

EXvz+ba9JnQfsXx+iH”.

• The Message Authentication Code (MAC) is also attached which is

“enc_mac_key:UtQHBswQimAZAp4s/9sfSQSpuq0=”

• The “expires_in:1209600” shows the time after which the association will

expire. This time is in seconds. After this time, the Consumer and the

Identity Provider will go through another association.

Another thing to note about the association is that it is up to the Consumer to

initiate the association request. The Consumer can perform association at any

 Page 182 of 247

time is deems necessary. If an association fails, the Consumer may elect to use

Dumb mode of communication without any association handle.

5.4 Diffie-Hellman (DH) Key Exchange Mechanism

Diffie-Hellman key exchange mechanism enables two parties to exchange a

shared key in a secure fashion. This shared key is used to encrypt further data

exchange between these two parties. The two parties may be completely unknown

to each other for the key exchange process to take place in a secure fashion.

5.4.1 Basic Process for Generating DH Keys

The algorithm itself is quite simple in its nature. The step-by-step process is as

follows:

1. Let us say Bob and Alice want to establish a shared secret. Bob and Alice

will start with a large prime number p and another small number, called

generator g. Both of these numbers need not be secret and any other

party may know these numbers. Both Bob and Alice already know these

two numbers.

2. Now Bob will chose a secret number a which will be typically a large

number. Bob will compute a number using formula (ga mod p) and will

send it to Alice. Let us say this number is x.

3. Alice will pick her own secret b and computer a number on her side using

formula (gb mod p) and send it to Bob. Let us say this number is y.

4. Note that Alice and Bob never share their selected secrets a and b. Now

that both Bob and Alice have numbers sent by each other (x and y), they

will use another formula on their sides to come up with a shared secret.

 Page 183 of 247

5. Bob will use formula (ya mod p) which will give him a shared secret key,

let us say K1. Essentially value of K1 is (ya mod p), which is ((gb mod p)a

mod p).

6. Alice will use formula (xb mod p) which will give her the same shared

secret key, K2. Value of K2 is (xb mod p), which is ((ga mod p)b mod p).

Mathematically ((gb mod p)a mod p) and ((ga mod p)b mod p) are the

same, so both K1 and K2 are the same.

Now that Bob and Alice have calculated the same shared secret key, they can use

it for further communication, or even exchange a stronger key using this shared

key. Also note that an eavesdropper can get hold of the prime number p, numbers

g, x, and y by sniffing the network. However, the eavesdropper can’t calculate key

K because numbers a and b are never sent over the network.

Let us take a simple example to explain the whole process. Let us assume that p is

19 and g is 2. Also let us assume that Bob picks a as 3 and Alice picks b as 5. Now

let us plug these values to calculate K1 and K2.

K1 = (25 mod 19)3 mod 19 = (32 mod 19)3 mod 19 = 133 mod 19 = 2197 mod 19 =

12

K2 = (23 mod 19)5 mod 19 = (8 mod 19)5 mod 19 = 85 mod 19 = 32768 mod 19 =

12

As you can see, both Bob and Alice reach the same number, which is 12. Now they

can use this number as a secret key. In practical cases, the prime number p and

numbers a and b will be quite large resulting in a shared key which is long

enough to withstand exhaustive search.

 Page 184 of 247

5.4.2 Diffie-Hellman Variants

Also note that the basic algorithm is vulnerable to man-in-middle attacks because

both parties have no way to authenticate to each other. This problem can be

solved using PKI and certificates.

Many variants of Diffie-Hellman key exchange mechanism exist. OpenID uses

one of these variants described in RFC 263131 as well as in OpenID specifications.

OpenID specifications describe default values of p and g to be used by the

OpenID Consumer and Identity Providers. The default value of g is 2 and default

value of base64(btwoc(p)) is as follows (as listed in OpenID specifications):

DCF93A0B883972EC0E19989AC5A2CE310E1D37717E8D9571BB7623731866E61E

F75A2E27898B057F9891C2E27A639C3F29B60814581CD3B2CA3 986D268370557

7D45C2E7E52DC81C7A171876E5CEA74B1448BFDFAF18828EFD2519F14E45E382

6634AF1949E5B535CC829A483B8A76223E5D490A257F05BDFF1 6F2FB22C583AB

The btwoc function converts a large arbitrary precision integer into big-endian

two’s compliment form. This is the standard form used in OpenID. Please refer to

OpenID specifications for more information.

5.5 Chapter Summary

In this chapter you learned how to install and run an OpenID server of your own.

The important things discussed in this chapter are as follows:

• Installing an OpenID server

• Configuring and creating profiles

• Backend database for OpenID server

31 RFC 2631 is available at ftp://ftp.rfc-editor.org/in-notes/pdfrfc/rfc2631.txt.pdf

 Page 185 of 247

• XRD and Yadis

• Different messages used in OpenID protocol

• Diffie-Hellman key exchange algorithm

This was the final chapter related to core OpenID protocol. Next chapters will

present additional concepts and using OpenID in enterprise environment.

5.6 References

• OpenID at http://openid.net

• OpenID Book web site at http://www.openidbook.com

• OpenID blog at http://openid.blogspot.com

• RFC 2631 is available at ftp://ftp.rfc-editor.org/in-

notes/pdfrfc/rfc2631.txt.pdf

• Yadis http://yadis.org

• Wireshark packet sniffer http://www.wireshark.org

 Page 186 of 247

Chapter Six

6 OpenID Extensions

In addition to the OpenID authentication protocol, which is the base of any

OpenID solutions, a number of OpenID extensions are proposed. Some of these

extensions are mature while others are in draft phase. This chapter provides

information about some of these extensions. New OpenID extensions will also be

included in this Chapter in future as they become available. Latest information

about these extensions can be found at http://openid.net/specs.bml where you

can find draft as well as final versions of these extensions. Note that new OpenID

extensions are continuously being developed and this chapter is not intended to

cover each and every extension. The objective is to give you an idea about how

extensions work and that the OpenID protocol is continuously being developed.

OpenID extensions deal with such things like:

1. User registration which enables Consumers to register new users when

they login to a web site for the first time.

 Page 187 of 247

2. OpenID service key discovery using Yadis

3. DTP messages which are MIME encoded

4. Attribute exchange or AX

5. Assertion quality

6. PAPE or Provider Authentication Policy Extension, used for anti-phishing

and other purposes.

This chapter is to have discussion on these extensions in more detail and enable

readers to use extensions that make sense for them.

After reading this chapter, you should be able:

• What are OpenID extensions

• Understand how different OpenID extension work

• When and where to use these OpenID extensions

• How to submit new extensions to OpenID

You will also be able to appreciate how open protocols can be extended and used

for different purposes.

Note that OpenID extensions use additional parameters in OpenID messages to

convey extra information.

 Page 188 of 247

6.1 Simple Registration or Profile Exchange

The Simple Registration extension32 is a mechanism to convey commonly used

parameters associated with a user profile. To be exact, there are eight parameters

which are commonly used in a user profile. These profile parameters are as listed

below. The word in parenthesis is the keyword used in OpenID messages as you

will see shortly:

1. Full name (fullname)

2. Nick name (nickname)

3. Email (email)

4. Date of Birth (dob)

5. User Gender (gender)

6. User Language (language)

7. Country (country)

8. Time Zone (timezone)

For the user registration purpose (or any other purpose), the Consumer web site

can request these additional parameters inside the checkid_immediate or

checkid_setup authentication request messages. The Consumer can also specify if

a requested parameter is “optional” or “required”. Previously in this book, you

have already seen how this extension was used in graded authorization.

32 Note that Verisign PIP identity provider web site that you used in the first chapter,
implements simple registration extension and in our example, we requested email
address in addition to the authentication.

 Page 189 of 247

6.1.1 How It Works

In a typical scenario, when a Consumer receives an OpenID URL from a user, it

may check if the user already exists or if this is the first time a user is logging into

the web site. If a user already exists, the Consumer may request a simple

authentication from the Identity Provider. However, if a Consumer finds that it is

the first time a new user is trying to login, it can attach request for these

additional profile parameters in the authentication request. By doing so, the

Consumer web site can create a more personalized profile for the End User

because now it has such things as full name, nick name, etc.

The Consumer can also use these parameters for additional tasks as graded

authorization.

6.1.2 Typical Use Cases

From a usability perspective, the benefits of profile exchange are very good. For

example, if a Consumer does not know the full name of an End User, it will

display a welcome message something like “Welcome

http://consumer.conformix.com/?user=openidbook, we hope to

serve you better”, which is not that intuitive or user-friendly. But if the

Consumer web site knows the full name, the same message will be something like

“Welcome Rafeeq Rehman, we hope to server you better” which is more

personalized and looks friendlier.

In other cases, a Consumer may also use additional profile messages for graded

or risk-based authentication. For example, depending upon how many

parameters are returned by an Identity Provider, the Consumer may provide

different levels of access.

 Page 190 of 247

6.1.3 Message Description

As mentioned earlier, the Consumer will send these additional parameters with

the checkid_immediate or checkid_setup request messages. The following

parameters in these messages are used for simple registration.

• The openid.ns.sreg parameter shows the location of namespace which

is “http://openid.net/extensions/sreg/1.1”. With older version 1.0 of the

specification, you may use “1.0” instead of “1.1”. However, you should note

that this parameter is optional.

• The openid.sreg.required is a list of comma separated parameter. If

the Identity Provider does not reply back with all of the parameters in the

response message, the Consumer has two options: Either not register the

End User, or prompt the end user to enter the remaining parameters

manually (e.g. using a web form). The understanding is that the

Consumer must have all of these parameters for user registration.

• The openid.sreg.optional is also a comma separated list of parameters

which the Consumer has requested but will not insist on having them.

• The openid.sreg.policy_url parameter is a URL where the Consumer

will put information about how the parameters will be used by the

Consumer. Typically it would be a “privacy policy” statement. When

Identity Provider received a request with this parameter, it should display

that web page to the End User so that the End User can decide whether or

not to send these parameters to the Consumer.

In general, any time a Consumer requests these additional parameters for user

registration purpose, the Identity Provider should prompt the End User before

sending these parameters to the Consumer. The End User should be given a

choice which parameters it wants to send to the Identity Provider. From

 Page 191 of 247

examples in the preceding chapters, you have seen how the Identity Provider

prompted the End User when the Consumer requested the Email address.

Once an Identity Provider has received a request for Simple Registration

message, it will reply back to the Consumer with a response message. In addition

to regular response parameters, following additional parameters will be attached

to the response message with a successful authentication. If authentication fails,

none of these parameters will be attached to the response. Note that here all of

the possible parameters are listed but the response will contain only those

parameters which are requested by the Consumer.

• The openid.ns.sreg is the same as described earlier.

• The openid.sreg.nickname in UTF-8 format

• The openid.sreg.fullname in UTF-8 format

• The openid.sreg.postcode in UTF-8 format

• The openid.sreg.email which should have email address of the End

User.

• The openid.sreg.dob parameter which shows date of birth and will be

in YYYY-MM-DD format. The Identity Provider can make some parts as 0

(zero) if you want to send only partial date of birth information.

• The openid.sreg.gender in “M” or “F” format where M denotes Male

and F for Female.

• The openid.sreg.country parameter shows the country code. Country

codes are defined by International Standards Organization (ISO) and you

can see a list of country codes at http://www.iso.org/iso/en/prods-

services/iso3166ma/02iso-3166-code-lists/index.html. Note that these

 Page 192 of 247

country codes are used for many purposes in daily life, like postal services,

domain names, stock market trading, and so on.

• The openid.sreg.language parameter defines the language codes as

defined by ISO. List of languages codes is available at

http://www.loc.gov/standards/iso639-2/php/code_list.php web site.

• The openid.sreg.timezone parameter shows time zone of the End

User. List of time zones can be found at

http://en.wikipedia.org/wiki/List_of_tz_zones_by_name where you will

see names for time zones for different parts of world.

Note that the Identity Provider may decide to return only a subset of the

parameters that a user requested based upon the End User selection.

The following message shows an optional parameter email being requested. The

relevant part in the following listing is in boldface.

HTTP/1.1 302 Found

Date: Mon, 26 Mar 2007 01:16:42 GMT

Server: Apache/2.2.3 (Fedora)

X-Powered-By: PHP/5.1.6

Expires: Thu, 19 Nov 1981 08:52:00 GMT

Cache-Control: no-store, no-cache, must-revalidate, post-check=0, pre-

check=0

Pragma: no-cache

Location:

http://idp.conformix.com/index.php/serve?openid.ass oc_handle={HMAC-

SHA1}{46071e25}{Tt8MwQ==}&openid.identity=http://id p.conformix.com/?user=

openidbook&openid.mode=checkid_setup&openid.return_ to=http://consumer.con

formix.com:80/finish_auth.php?nonce=nC5sKquX& openid.sreg.optional=email &o

penid.trust_root=http://consumer.conformix.com:80/

Content-Length: 0

Connection: close

Content-Type: text/html; charset=UTF-8

 Page 193 of 247

In the above listing, the “openid.sreg.optional=email” part shows the OpenID

extension part.

6.1.4 Simple Registration and Yadis

Note that Simple Registration extension is a service and a Consumer can use

Yadis protocol to discover this service. The following is a typical XRD document

retrieved by Yadis request that shows Simple Registration as a service.

<?xml version="1.0" encoding="UTF-8"?>

<xrds:XRDS

 xmlns:xrds="xri://$xrds"

 xmlns:openid="http://openid.net/xmlns/1.0"

 xmlns="xri://$xrd*($v*2.0)">

 <XRD>

 <Service>

 <Type>http://openid.net/signon/1.1</Type>

 <Type>http://openid.net/sreg/1.0</Type>

 <URI>http://idp.conformix.com/index.php/serve </URI>

<openid:Delegate>http://idp.conformix.com/?user=ope nidbook</openid:Delega

te>

 </Service>

 </XRD>

</xrds:XRDS>

The relevant part is shown in boldface in the above listing under the “Services”

node. From this you know that Simple Extension is a service like other services

provided by an Identity Provider. It can be discovered using Yadis like any other

service.

6.2 OpenID Service Key Discovery

OpenID uses PKI (Public Key Infrastructure) for many purposes. In PKI two

parties communicate with each other using public-private key pair. Each party

 Page 194 of 247

holds keeps the private key secret (also known as secret key) but make the public

key available to everyone who wants to use it.

Public keys are used to establish secure connections in daily life very often. For

example, PKI is used in SSL connection to secure communication with a web site.

Typically Public/Private key mechanism is used to exchange a shared key.

Encryption by a shared key is much faster compared to public/private key in

terms of computation time.

OpenID key discovery extension is a mechanism where two parties or end points

of a communication channel can publish and discover public keys.

This extension is in a draft phase and may change over time.

6.2.1 How it Works

Yadis is the basic mechanism to advertise and discover public keys. Yadis uses

XRD document as discussed earlier to discover keys. The XRDS document may

have an element like the following in XML format.

<PublicKey>

 https://www.conformix.com/certs/openid.crt

</PublicKey>

Once the Yadis has discovered the key URL, it can be retrieved using a GET

request over HTTPS protocol. If the key URL does not contain https, the client

may not accept the public key.

6.2.2 Typical Use Cases

The public key is used for message exchange in the S/MIME format.

Public keys can also be used for many other types of tasks, such as:

• The Consumer and IdP may use public keys for encrypting some “out-of-

band” communication in a custom application.

 Page 195 of 247

• The mechanism may be useful in distributing keys in a corporate

environment.

Since this specification is still in draft mode, the implementers should consider

the risk of specification being revised later on.

6.2.3 Message Description

The key discovery and retrieval does not need any OpenID message. Yadis is

sufficient to discover a key and regular GET request can be used to retrieve the

key because the URL is already known to the Consumer by analyzing the Yadis

message.

6.3 How to Submit New Specification

If you are engaged in OpenID work and need additional functionality, you have

the options of submitting new specifications. You can submit new specifications

for OpenID using specs@openid.net mailing list where there will be discussion

on the specification by OpenID community. For more information, please refer to

http://openid.net/specs.bml.

6.4 Chapter Summary

In this chapter you have learned about OpenID extension and how they work.

There was specific discussion on:

• OpenID Simple Registration extension

• OpenID Service Key Discovery extension

There are other specifications as well which are in the draft form. Information

about these specifications is available on the OpenID web site.

 Page 196 of 247

6.5 References

• ISO Codes http://www.iso.org/iso/en/prods-

services/iso3166ma/02iso-3166-code-lists/index.html

• OpenID Specifications http://openid.net/specs.bml

• List of languages codes at http://www.loc.gov/standards/iso639-

2/php/code_list.php

• List of time zones at

http://en.wikipedia.org/wiki/List_of_tz_zones_by_name

 Page 197 of 247

Chapter Seven

7 OpenID as

Enterprise Solution

Enterprise environment is significantly different in many ways than small

company environment. In the Enterprise, there are many additional things that

need to be considered. OpenID is a suitable solution for a number of applications

in the enterprise environment, including cross company authentication and

Single Sign On (SSO). This becomes especially useful when OpenID is integrated

into enterprise LDAP or other directory solutions.

In this chapter we are going to look into different ways of using OpenID in

enterprise. OpenID can be used as an effective mean for cross company

authentication (CCA) as well as for single sign on (SSO).

 Page 198 of 247

After reading this chapter, you will be able to:

• Understand what options are feasible for using OpenID in the enterprise

• How to use OpenID in cross company authentication environment

• OpenID with digital certificates

• Issues related to digital certificates when using with OpenID

7.1 Cross Company Authentication Solutions and

OpenID

Cross company authentication (CCA) is often needed in enterprise environment.

This is because any large company has to exchange data, login to partner web

sites, work with hosted applications, and so on. No company can afford to have a

separate username and password for all of these web based applications. The

preferred way is to use an employee’s corporate credentials when the employee

logs into an external web site. However, you don’t want to send a user’s password

to another company. This is where the idea of cross company authentication

comes into picture.

Security Assertion Markup Language (SAML33) is an established process for cross

company authentication. However, this is a heavy protocol and expensive to

manage. OpenID provides a light-weight and cost-effective to implement CCA.

This section provides a simple architecture to implement CAA using OpenID and

enterprise directory services. For OpenID to be a feasible solution for CCA, it is a

must that it should work with enterprise directory.

33 More information about SAML is available at http://www.oasis-
open.org/committees/tc_home.php?wg_abbrev=security

 Page 199 of 247

User credentials in any enterprise are managed using a directory services

solution. Most commonly used solutions are:

• Light Weight Directory Access Protocol or LDAP

• Microsoft Active Directory

• Novell eDirectory

• Oracle directory solution

• Sun Micro Systems directory servers

All of these solutions are compatible with LDAP in one way or the other which

has become a de-fecto enterprise standard. That is the reason that OpenID must

be able to talk to LDAP to get accepted in this environment. This can be

accomplished by adding LDAP as a “store” in different OpenID APIs.

However, OpenID can also be used for CCA as described next.

7.1.1 General Architecture for OpenID Cross Company

Authentication

In a typical enterprise environment, users are managed with the help of some

type of directory service. Microsoft Active Directory, Novell eDirectory, LDAP

repository, Sun directory, are some example of enterprise directory services. For

OpenID to work in an enterprise environment, it must use these directory

services to store user information.

A typical OpenID environment where users in an enterprise are able to login to

partner web sites is shown in Figure 7-1.

 Page 200 of 247

Figure 7-1: A typical enterprise OpenID environment enabling CCA.

In this Figure, a user sitting inside enterprise network is logging in to a partner

web site over the Internet. The user enters his enterprise ID. The partner web site

converts this ID into an agreed-upon URL and sends it back to the enterprise

OpenID server for authentication. The OpenID server may verify user credentials

using the backend LDAP repository and then reply the authentication request to

the web site in the partner network.

Note that you never send a user credential to the partner web site in this

architecture. The only thing a partner web site receives is success or failure of

authentication.

Note that the business partner web site must be OpenID enabled and should

implement a scheme to convert a regular userID to an OpenID URL. Converting a

typical 6-8 characters long userID to an OpenID URL acceptable to the enterprise

OpenID server is trivial if you have used examples in Chapter 4.

 Page 201 of 247

A number of things have to happen to enable the company employee login to the

partner web site using enterprise credentials. The step-by-step process is as

follows:

1. The employee goes to the login screen of the web application and enters

his/her username used in the enterprise network.

2. The login page on the partner network uses this username and creates an

OpenID identity URL and sends it to OpenID server in the enterprise

network.

3. The OpenID server can ask the employee to authenticate (if the employee

has not already done so).

4. The OpenID server will validate the user using a call to enterprise LDAP

systems. Upon success, it will send the positive authentication back to

partner web site to complete the login process.

You should note the following items with this arrangement.

• User password is never sent to partner network

• The authentication is done using enterprise LDAP system

• In case an employee is terminated or leaves company, his/her access to

partner web sites is automatically terminated as well

• The partner web sites can enable OpenID easily using APIs already

available in the open source

These are very good advantages to use OpenID as a cross company authentication

mechanism.

7.1.2 User Interface for OpenID Server

In a typical scenario, the user interface for the OpenID server will be accessible

from within the enterprise environment only to improve security.

 Page 202 of 247

7.1.3 Partner/Hosted Web Sites

Partner web sites for all business partners or application hosting service

providers need to have the following items implemented:

• Partner web sites should be OpenID enabled.

• Partner web sites should have provision for converting a regular userID to

OpenID URL for users logging in from the enterprise environment.

• The web sites may also serve requests from users of multiple customers.

7.1.4 Security Controls

For this architecture, different security controls can be put in place. Some of

these are as follows:

• The enterprise OpenID server accepts authentication requests only from

known partner web sites.

• The firewalls on both the enterprise and partner side allow ports 80 and

443 (HTTP and HTTPS) from known locations only to get to the OpenID

server.

• There is no user registration process on the OpenID server. It uses already

established backend LDAP systems.

• Users can use their enterprise username and partner web sites can

convert these names to OpenID URL, which makes this solution quite

seamless for end users.

7.2 OpenID for intrAnet Applications

Typically, any large organization has a number of internal applications that use

some backend repository for authentication and authorization. Sometimes the

 Page 203 of 247

number of these applications is in hundreds. Typically, this backend repository

may be Microsoft Active Directory or LDAP servers.

The problem is that every time a new application is added to the mix, the IT

department is involved in granting access rights to the new application to connect

to these backend directory servers and manage privileges. This not only increases

IT services management overhead, but also increases project timelines in many

cases.

To overcome these issues, it is very useful to stand up an OpenID front end server

for authentication and any number of new applications can then be seamlessly

integrated to corporate directory services. No involvement from the IT

department is needed in this case.

Each of the new applications can manage their own authorization, if needed.

7.3 Secure OpenID and Digital Certificates

Some identity providers have started providing X.509 certificate based identities.

In this case, an identity is attached to a digital certificate installed on a user’s

computer and available through web browser.

Services like this may be useful in enterprise environment where a PKI solution is

already in place.

While implementing any X.509 certificate solution, you should consider things

like certificate expiration and revocation and implications of lost certificates on

the access control.

 Page 204 of 247

7.3.1 Certifi.ca

One of the services providers is Certifi.ca and information is available at its web

site https://certify.ca. This provider works with digital certificates, i.e. your

OpenID identifier is tied to a digital certificate.

You have to get a certificate from another certificate provider. A list of free

certificate providers is listed in next section.

Things to note about using Certifi.ca are as follows:

• The web site recognizes you by the certificate. When registering for the

first time, the web site will ask you which certificate to you.

• If you don’t have a certificate installed in your browser, you can’t create

your Identity.

• Once the Identity is created, you don’t need to authenticate by yourself

with the Identity Provider (Certifi.ca). You browser will do it for you using

the certificate.

If your browser has certificate installed, it will act as it is permanently logged in

to the web site such that you don’t need to authenticate to the OpenID server by

entering username/password.

A typical OpenID identifier URL is something like http://certifi.ca/openidbook.

The neat thing is that you can login from the computer where you installed the

certificate and as long as you protect your computer, you don’t need to remember

any username and password.

Certification expiration may become another issue that need to be considered

while implementing solutions like this.

 Page 205 of 247

7.3.2 Prooveme

Prooveme provides OpenID Identity Provider services which is based upon

digital certificates. When you create your OpenID account, the web site will give

you a certificate that you will install in your web browser. This certificate is used

for client-side authentication. This means, that whenever you use your OpenID

URL to login to a web site, your web browser will use this certificate to

authenticate to Prooveme. Since you are not creating any username/password

with Prooveme, the authentication process is transparent to you (unless you have

configured your browser to prompt to choose a certificate).

While using Prooveme (or similar services), you should keep the following in

mind:

• You will not use any username and password to authenticate to the

Identity Provider (i.e. Prooveme.com) when you use your Identity URL.

• The authentication will be done using certificate installed in your web

browser.

• You should keep a backup copy of the certificate, in case you need to re-

install you machine.

• You can login only from the machine where you have installed your

certificate. If you want to login from multiple machines, you have to

backup your certificate from one machine and install it on other

machines.

• If you are using multiple web browsers, you have to install the certificate

in each browser. You can do so by backing up the certificate from the

original browser which you used to create you account and then install it

in other browsers using “import” facility.

 Page 206 of 247

• The certificate based authentication is more secure compared to

username/password authentication. However, keep in mind that if

someone gets physical access to the machine where the certificate is

installed, that person will use your account. To overcome this problem,

you can password protect the user of your certificate.

• If you are using multiple IDs on the same machine or want to switch IDs,

you have to tell your browser which certificate to use. FAQ section on

Prooveme web site discusses some steps that you can take for this

purpose.

You can create your OpenID URL by visiting Prooveme web site at

https://www.prooveme.com/.

Once you have installed a certificate in your web browser, you can see it in your

web browser. In Internet Explorer, you will go into “Internet Options” in “Tools”

menu and then click on the “Content” tab. There you will see a button

“Certificates” which will take to the list of certificates you have installed. Figure

7.2 shows a typical window with list of certificates in Internet Explorer.

 Page 207 of 247

Figure 7.2: List of certificates in Internet Explorer.

In Firefox, you will go to “Tools” menu and then select “Options”. In Options, you

will select “Advanced” button and then “Encryption” tab. Now if you click on

“View Certificates” button, you should be able to see the certificates. Figure 7-3

shows a typical list of certificates in Firefox browser.

 Page 208 of 247

Figure 7-3: List of certificates in Firefox browser.

To view detail of a certificate, you can double click on the certificate name both in

Internet Explorer and Firefox. Figure 7-4 shows detail of the Prooveme certificate

in Firefox.

 Page 209 of 247

Figure 7-4: Detail of Prooveme certificate in Firefox.

 Page 210 of 247

Note that I am using Internet Explorer version 7 and Firefox version 2.0. The

location may be slightly different in other versions of these browsers.

7.3.3 Getting Free Certificates

There are multiple places on the Internet where you can go and get digital

certificates. Some of the locations are listed below:

• CA-Cert at http://cacert.org

• Thawte Personal Email Certificate http://www.thawte.com/secure-

email/personal-email-certificates/index.html

• Startcom Free Certificates http://cert.startcom.org/

• Comodo Free Certificates: For personal use, you can get free certificates

from Comodo. For more information, have a look at

http://www.comodo.com/products/certificate_services/email_certificate

.html

7.4 OpenID and OpenSSO

There is another effort to integrate OpenID and OpenSSO and more information

about this effort is available at the following web site.

https://opensso.dev.java.net/public/extensions/openid/

7.5 Chapter Summary

In this chapter, you looked at different ways OpenID can be used in an enterprise

environment and how to use certificate based solution for OpenID. The

important thing to remember is that for OpenID to be a viable solution in the

enterprise environment, it has to work with solutions like LDAP. In some cases

 Page 211 of 247

OpenID may be a better solution than existing solutions. It is lightweight

compared to SAML and provides adequate security and ease of use as well.

Enterprise environment is more challenging compared to small companies as for

as identity management solutions are concerned. In this chapter we looked at two

major items important to use of OpenID in the enterprise. These are:

• Use of OpenID as cross company authentication solution.

• OpenID solutions related to digital certificates.

OpenID can be a good solution especially for CCA if implemented properly. An

architecture is proposed for implementing CCA using OpenID for business

partners and external application hosting.

7.6 References

• SAML http://www.oasis-

open.org/committees/tc_home.php?wg_abbrev=security

• Certifi X.509 based Identity Provider http://certifi.ca

• Prooveme X.509 based Identity Provider https://www.prooveme.com/

• OpenID and OpenSSO

https://opensso.dev.java.net/public/extensions/openid/

 Page 212 of 247

Chapter Eight

8 OpenID Protocol:

Miscellaneous

Topics

We have discussed a number of issues related to OpenID protocol in previous

chapters. However, there are some other topics that are not yet discussed. This

chapter is kind of “catch all” for all of the remaining chapters.

After reading this chapter, you will be able to:

• Basic security issues related to OpenID

 Page 213 of 247

• Privacy

• Use of OpenID protocol for desktop applications

• Send-a-message protocol

• OpenID and Windows CardSpace

8.1 OpenID Security Issues

Like any other protocol, OpenID should be implemented in a secure way. There

are some security issues that should be considered. This section provides

information about some security issues.

8.1.1 Relay Attacks

In some cases, OpenID may be vulnerable to relay attacks. Probability of relay

attacks is minimized with the help of nonce variable in OpenID messages.

However, if a Consumer is not actively storing nonce or allows a long lapse for

timestamp in the nonce value, it may become vulnerable to relay attacks.

To avoid relay attacks, following steps may be useful.

• All Consumers and Identity Providers should use NTP (Network Time

Protocol) to keep the clock synchronized with a standard time source.

• Consumers should discard those messages for which difference between

the current time at the consumer and the timestamp in the nonce variable

is far off.

8.1.2 Phishing Attack

OpenID is vulnerable to some phishing attacks and there are efforts in progress

for making improvements to avoid phishing attacks. OpenID PAPE extension is

especially useful to protect against phishing attacks.

 Page 214 of 247

8.1.3 OpenID and Use of SSL

Use of SSL (Secure Socket Layer) is very important in any OpenID system. SSL

encrypts all data on the transport level and is very commonly used as a security

measure between web browser and web server.

It is highly recommended that all OpenID protocol communication Consumer,

Identity Provider, and the User Agent should be SSL encrypted.

8.1.4 OpenID and Browser History

Since a number of OpenID messages are passed using HTTP GET method, there

is a possibility that these messages are stored in browser history. If an attacker

gets access to the machine, the browser history may provide significant

information. This is especially important if a user is using a public computer

where multiple people have access to the browser history. Solution to this

problem lies in education and awareness of a user. In case of a public computer

use, the user should remove the browser history after he/she is done with the web

site access.

Another important thing to note about the HTTP GET method is un-intentional

posting of query string parameters to marketing services that use methods like

transparent GIF files or JavaScript. Many web sites use these services for tracking

web site visitor behavior and effectiveness of different web pages. However, these

services may use JavaScript in addition other methods to send URLs to the

marketing company web sites. If an OpenID-enabled web site developer is using a

marketing service and is not careful about marketing services or other tracking

mechanisms, the URLs in OpenID protocol messages may be sent to a marketing

company inadvertently.

8.1.5 Identity Provider and Trust Issue

When you use a third party as your identity provider, the third party gets a lot of

information about you, including which web sites you visit and what is your

 Page 215 of 247

routine to go to these web sites. The identity provider can use all of this

information to create your profile and thus causing some concerns about the

privacy.

Since the Identity Provider also holds your credentials, a security breach at the

Identity Provider’s web site may expose your identity as well as data about the

web sites where you use that identity. This creates a significant risk because this

information will enable an attacker to login to web sites where you have accounts.

For this reason, you should either go to an identity provider that has a good

reputation from security perspective or run your own identity provider inside

your company.

8.2 OpenID and Privacy

In addition to the security of the OpenID protocol itself, there are some privacy

related issues that may need to consider. These privacy issues are especially

important if you are using an OpenID identity provider from a third party. Some

of the major concerns are listed in this section.

The privacy concerns are not a big issue if you use OpenID in the enterprise and

have a control over the OpenID identity server.

8.2.1 Saving OpenID Credentials on Identity Provider Web

Sites

One of the privacy concerns is saving identity information on an Identity

Provider’s web site as mentioned earlier. The security and privacy of this

information depends upon the security of the OpenID Identity Provider. In some

cases, the data stored on the Identity Provider’s location may be quite sensitive.

For example, if date of birth, address, and social security numbers are stored at

 Page 216 of 247

the Identity Provider’s servers, any breach of the Identity Provider may result in

serious issues like identity theft.

This issue does not exist in the corporate environment where a company is

hosting its own identity server.

8.2.2 Identity Providers Logging

Identity providers may log a user’s activities by logging to which web site a user

goes to, time of visits, and so on. This is very sensitive information related to a

user habits and behavior and has serious privacy concerns.

This problem can be solved in multiple ways:

• If you are corporation, you should be able to run your own Identity server

• Before you use an Identity Provider service, read carefully their privacy

and information use policy.

8.3 OpenID for Desktop Clients and Miscellaneous

Uses of OpenID

Typically OpenID is used with web-based applications. However, there are some

interesting discussions about using OpenID for desktop application as well. The

following URL shows an introduction to use of OpenID for desktop.

http://blog.wachob.com/2007/03/openid_for_desk.html

There are also some discussions about this topic on OpenID mailing lists.

8.3.1 Send-a-Message Protocol

In regular web-based applications, you can invite other people/friends to your

web site or community using their email addresses. However, in OpenID, there is

 Page 217 of 247

only a URL and not an email address. So how to invite someone using OpenID?

The following URL gives you a draft proposal about “send-a-message protocol”

which may be interesting for some of the readers.

http://openid.net/wiki/index.php/Send_A_Message_Protocol

There is some discussion on OpenID mailing lists as well.

8.4 OpenID and Windows CardSpace

Windows CardSpace was introduced by Microsoft to manage identity in a more

intuitive way using Microsoft Windows systems. The Windows CardSpace is a

control panel applet in the Microsoft Windows operating systems. This section is

not intended to explain the CardSpace itself, but to give you an idea about how

OpenID can be used to login to CardSpace enabled web sites. You can find

sufficient information about the CardSpace from the following URLs:

• Windows CardSpace information at http://msdn2.microsoft.com/en-

us/library/aa480189.aspx

• CardSpace FAQ at http://cardspace.netfx3.com/content/faq.aspx

• CardSpace samples http://cardspace.netfx3.com/files/default.aspx

You would note that Windows CardSpace uses many of the same concepts as

OpenID protocol.

Just like you find OpenID enabled web sites, there are CardSpace enabled web

sites as well. When you visit a CardSpace enabled web site using Internet

Explorer, the CardSpace will detect that it is a supported web site and will pop-up

the CardSpace applet window where you can choose a “Card” to present to the

web site.

 Page 218 of 247

If you integrate OpenID to CardSpace, your OpenID URL will appear as a “card”

that you use to login to CardSpace enabled web sites. This way, your OpenID

identity works both with OpenID and CardSpace enabled web sites.

In this section, we are going to use Verisign PIP identity to create a card in

CardSpace and then use it to login to CardSpace enabled web sites.

Figure 8-1 shown a screenshot of PIP web site where you create a CardSpace card

(referred to as “Information Card”). You do this after you login to the PIP web

site.

While creating a card, you can select which information should be part of the

information card using the right hand column. Once you click on “Create

Information Card” button, PIP web site will create a card file that you will

download and save on your desktop. After downloading, you can import this file

into the CardSpace using control panel.

 Page 219 of 247

Figure 8-1: Creating a new CardSpace card on PIP web site.

In Figure 8-2, you are going to import the downloaded file into your deck of cards

using the Windows CardSpace applet in the control panel. First you will click on

“Add Card” button which will take you to the next windows.

 Page 220 of 247

Figure 8-2: Importing a card into the CardSpace.

Figure 8-3 shows two types of cards that you can create in CardSpace. The first

type of cards is a personal card that you will create yourself. The second type of

card is “managed card” that is provided by some other identity provider. In this

case, you will use the managed card option because the identity provider for this

new card is Verisign PIP.

 Page 221 of 247

Figure 8-3: Selecting the type of a card.

When you move to the screen shown in Figure 8-4, you will be prompted to select

a file containing the card information. You will select the file that you just

downloaded from the PIP web site.

 Page 222 of 247

Figure 8-4: Importing the OpenID identity information card created by PIP.

After selecting the file, you will move to the screen shown in Figure 8-5 where you

will see the information contained in the OpenID card that you are installing.

Here you see the name of the identity provider and some other basic information

about the card.

Figure 8-5 also shows link that you can use to get the additional information

about the OpenID identity, like detailed information about the certificate

attached to the card, privacy statement, and detailed information about the card.

This is shown in Figure 8-6, 8-7, and 8-8.

 Page 223 of 247

Figure 8-5: Information about the new OpenID card.

 Page 224 of 247

Figure 8-6: Certificate information about the PIP OpenID card.

 Page 225 of 247

Figure 8-7: Privacy statement attached to the OpenID card.

 Page 226 of 247

Figure 8-8: Detailed information about the OpenID card.

After installation is complete, you will be able to see the additional OpenID card

in the CardSpace applet as shown in Figure 8-9.

 Page 227 of 247

Figure 8-9: CardSpace applet showing two cards from Verisign PIP (rrpip and

openidbook).

8.4.1 Logging into a CardSpace enabled Web Site

When you visit a web site using Internet Explorer that supports CardSpace, the

CardSpace applet will popup and will show all of the cards that can be used to

login to the web site.

 Page 228 of 247

In Figure 8-10, you see such a window. You see the card that you have already

used with this web site in the top row. You also see other cards that are available

for this web site in the bottom row.

Figure 8-10: CardSpace popup window when logging into a web site.

After viewing this popup window, you select the newly created card. This

selection tells the CardSpace that you want to use this card to authenticate to the

web site. When you make this selection, you will see a window as shown in Figure

8-11.

 Page 229 of 247

Figure 8-11: Parameters requested by the CardSpace enabled web site.

In Figure 8-11, you see a list of all parameters that are requested by the web site

where you are trying to login. This gives you a chance to review the information

before you send it to the web site. Since this is the first time you are going to use

this card, the CardSpace will redirect you to the Identity Provider (PIP in this

case) to retrieve this information.

 Page 230 of 247

Figure 8-12: Creating a new CardSpace card on PIP web site.

In Figure 8-12, you will enter your password so that CardSpace can retrieve the

information it needs to send to the web site. Note that this also validates your

identity with the Identity Provider (PIP).

After you have entered the password, CardSpace will retrieve the information

from PIP and will display it to you as shown in Figure 8-13.

 Page 231 of 247

Figure 8-13: Creating a new CardSpace card on PIP web site.

In Figure 8-13, if you click on the “Send” button, this information will be sent to

the web site where you are trying to login and you will be logged in to the web

site.

Note that in CardSpace and OpenID integration using this scheme, you local PC

acts as OpenID Consumer and gets information from your Identity Provider.

After that, it uses this information to login to a CardSpace enabled web site.

 Page 232 of 247

8.5 References

• Windows CardSpace information at http://msdn2.microsoft.com/en-

us/library/aa480189.aspx

• CardSpace FAQ at http://cardspace.netfx3.com/content/faq.aspx

• CardSpace samples http://cardspace.netfx3.com/files/default.aspx

• OpenID for desktop

http://blog.wachob.com/2007/03/openid_for_desk.html

• Send a Message Protocol at

http://openid.net/wiki/index.php/Send_A_Message_Protocol

 Page 233 of 247

Appendix A

9 Glossary

OTP One Time Passwords which are randomly

generated and used only once.

SSH Secure Shell is a mechanism to log on to remote

servers in a secure way. The protocol establishes a

secure communication tunnel between two end points

for data transport.

Digital Certificate Digital Certificate or X.509 Certificate is the electronic

information that identifies an entity. The entity may

be a person, a server, or any other device to name a

few. The certificate may also be used for applications

and in many scenarios authentication and

 Page 234 of 247

authorization is done using certificates. Certificates

are also used to encrypt internet traffic, like SSL or

sending secure email.

IVR Interactive Voice Response is a system used with

traditional telephony to get information over

telephone.

SSO Single Sign On

CCA Cross Company Authentication

SSL Secure Socket Layer

Consumer Consumer is web-enables application that uses the

OpenID system for authentication purposes.

Relying Party See Consumer

XRD eXtensible Resource Descriptor

 Page 235 of 247

Appendix B

10 References and

Useful Links

10.1 References

• Yadis http://yadis.org

• Wireshark packet sniffer http://www.wireshark.org

• Ethereal packet sniffer http://www.ethereal.com

• Smarty Software http://smarty.php.net/

 Page 236 of 247

• JanRain PHP server

http://www.openidenabled.com/resources/downloads/php-server/PHP-

server-1.1.tar.gz

• JanRain OpenID PHP Library

http://www.openidenabled.com/resources/downloads/php-openid/PHP-

openid-1.2.2.tar.gz

• OpenID main page http://openid.net

• Diffie-Hellman Key Agreement Method RFC 2631

http://www.ietf.org/rfc/rfc2631.txt

• Hypertext Transfer Protocol HTTP/1.1

http://www.ietf.org/rfc/rfc2616.txt

10.2 RFCs

OpenID specifications are compliance with many RFC34s (Request For

Comment). Following is a list of RFCs that you can refer to for detailed

information.

• RFC 2104: Keyed-Hashing for Message Authentication at ftp://ftp.rfc-

editor.org/in-notes/pdfrfc/rfc2104.txt.pdf

• RFC 1750: Randomness Recommendations for Security at ftp://ftp.rfc-

editor.org/in-notes/pdfrfc/rfc1750.txt.pdf

34 RFC or Request For Comment are documents published by the Internet Engineering
Task Force (IETF) and they define Internet standards. List of RFCs can be found at
www.rfc-editor.org

 Page 237 of 247

• RFC 3174: US Secure Hash Algorithm 1 (SHA1) at ftp://ftp.rfc-

editor.org/in-notes/pdfrfc/rfc3174.txt.pdf

• RFC 3548: The Base16, Base32, and Base64 Data Encodings at

ftp://ftp.rfc-editor.org/in-notes/pdfrfc/rfc3548.txt.pdf

• RFC 3330: Date and Time on the Internet: Timestamps at ftp://ftp.rfc-

editor.org/in-notes/pdfrfc/rfc3339.txt.pdf

• RFC 2631: Diffie-Hellman Key Agreement Method at ftp://ftp.rfc-

editor.org/in-notes/pdfrfc/rfc2631.txt.pdf

• RFC 2616: Hypertext Transfer Protocol -- HTTP/1.1 at ftp://ftp.rfc-

editor.org/in-notes/pdfrfc/rfc2616.txt.pdf

• RFC 2119: Key words for use in RFCs to Indicate Requirement Levels at

ftp://ftp.rfc-editor.org/in-notes/pdfrfc/rfc2119.txt.pdf

• RFC 3629: UTF-8, a transformation format of ISO 10646 at ftp://ftp.rfc-

editor.org/in-notes/pdfrfc/rfc3629.txt.pdf

• RFC 3986: Uniform Resource Identifier (URI): Generic Syntax at

ftp://ftp.rfc-editor.org/in-notes/pdfrfc/rfc3986.txt.pdf

10.3 OpenID Libraries

• Google Java OpenID Library http://code.google.com/p/openid4java/

• PHP5 implementation http://www.openidforphp.org/

10.4 OpenID Providers

• MyOpenID http://www.myopenid.com

 Page 238 of 247

• PIP http://pip.verisignlabs.com

• Sun Microsystems Identity Services at http://openid.sun.com

10.5 Miscellaneous

• Coder and Decoder http://meyerweb.com/eric/tools/dencoder/

• RP Best Practices

http://openid.net/wiki/index.php/Relying_Party_Best_Practices

• ISO Country Codes http://www.iso.org/iso/en/prods-

services/iso3166ma/02iso-3166-code-lists/index.html

• ISO Language Codes http://www.loc.gov/standards/iso639-

2/php/code_list.php

• Time Zones List

http://en.wikipedia.org/wiki/List_of_tz_zones_by_name

• OpenID Directory at http://openiddirectory.com/ provides listing of

different resources for OpenID. It is a very useful web site.

• Windows CardSpace information at http://msdn2.microsoft.com/en-

us/library/aa480189.aspx

• CardSpace FAQ at http://cardspace.netfx3.com/content/faq.aspx

• CardSpace samples http://cardspace.netfx3.com/files/default.aspx

• Kerberos http://web.mit.edu/Kerberos/

• OpenID for desktop

http://blog.wachob.com/2007/03/openid_for_desk.html

 Page 239 of 247

• Send a Message Protocol at

http://openid.net/wiki/index.php/Send_A_Message_Protocol

 Page 240 of 247

Appendix C

11 Index

Active Directory, 51

associate message, 75

association, 179

association lifetime, 104

authentication, 39

factors, 47

user-centric, 37

Authentication, 37

authorization, 37

graded authorization, 51

risk based authorization, 51

Authorization, 40

Bandit, 53

biometric, 45

CAPTCHA, 150

CardSpace, 20, 52, 217

CCA, 19, 20, 199, 200, 234

Certifi.ca, 204

Certification Revocation List. See

CRL

check_authentication, 86, 175

checkid_immediate, 80

checkid_setup, 80

CICS, 51

 Page 241 of 247

Claimed Identifier, 81

Consumer, 21, 36, 58

CRL, 46

cross company authentication, 198

cross-company authentication, 19

delegate, 72, 153

delegation, 151

Diffie-Hellman, 182

Direct Communication, 63

directory attributes, 50

discovery, 64

DNS, 35

dumb mode, 63, 86

Dumb mode, 32

Federated Identity, 49

graded authorization, 117

Higgins, 53

Identifier, 35, 58

Identity, 38

identity management, 41

Identity Management, 49

Identity Provider, 21, 35, 59

Identity URL Composition, 34

IdP, 59

IETF, 50

Indirect Communications, 63

Interactive Voice Response. See IVR

Internet Engineering Task Force. See

IETF

IVR, 43

Kerberos, 48

LDAP, 50

LID, 53

Light Weight Directory Access
Protocol. See LDAP

modes of operation, 63

MySQL, 144

nonce, 213

One time password. See OTP

one-time authorization, 131

OP, 59

OpenID, 19

openid messages, 74

OpenSSO, 210

OTP, 44, 47

Personal Identification Number. See

PIN

phishing, 213

PIN, 43, 45

Privacy, 215

RACF, 18

Relying Party, 21, 36, 59

RFC, 50

risk based access control, 117

SAML, 49

 Page 242 of 247

SeatBelt, 132

shared secret, 104

simple registration, 111, 190

single sign on, 19

single sign-on, 48

smart cards, 44

smart mode, 67, 103, 179

Smart mode, 32

Smarty, 143

SSH, 45

SSL, 45, 65, 77, 194, 214, 233, 234

SSO, 48, See single sign on

strong authentication, 46

Sxipper, 134

two-factor authentication, 44, 47

URI, 58

User Agent, 59

VPN, 45

weak authentication, 46

Wireshark, 165

X.509, 45

X.509 certificate, 203

XRD, 53, 166

Yadis, 53, 193

 Page 243 of 247

Appendix D

12 Support the Free

Book Initiative

This is a free book in electronic format and can be downloaded from

http://www.openidbook.com. By advertising your business in book, you will

support the free book initiatives and keep it going. You will also reach the target

audience who is working in identity management and information security. There

is no fixed cost for advertisement and you can advertise with as much as you can.

Depending upon your budget, we will provide you the right package.

In the next pages, you will see some sample advertisements. You can provide

your own ad material or we can design it for you. For more information, contact

us at info@conformix.com or by toll free phone at 800-747-0283.

 Page 244 of 247

CISSP Training

For Online and On-Site CISSP

training, contact

Conformix Technologies Inc.

Phone: 800-747-0283

Email: info@conformix.com

Web: http://www.conformix.com

 Page 245 of 247

Conformix Technologies Services

• Book publishing with focus on:

Information security
Open source technologies

• Training and Education

Information security
Open source technologies

• IT Consulting

Information security
Open source technologies

Please contact

Conformix Technologies

Web: www.conformix.com

Email: info@conformix.com

Phone: 800-747-0283

 Page 246 of 247

Other Books by Rafeeq Rehman

1. HP-UX CSA: http://www.amazon.com/HP-UX-CSA-Official-Reference-
Professional/dp/0131448544/

2. HP Certified HP-UX System Administration:
http://www.amazon.com/HP-Certified-HP-UX-System-
Administration/dp/0130183741/

3. Advanced Intrusion Detection Techniques using Snort:
http://www.amazon.com/Intrusion-Detection-SNORT-Advanced-
Techniques/dp/0131407333/

4. Linux Development Platform: http://www.amazon.com/Linux-
Development-Platform-Rafeeq-Rehman/dp/0130091154/

5. Solaris 8 Network Administrator: http://www.amazon.com/Solaris-
Network-Administrator-Training-CD-ROM/dp/1578702615/

6. Get Ready for CISSP Certification Exam:
http://www.conformix.com/books/cissp

 Page 247 of 247

Security Management And Risk Tracking

SMART

SMART is a free software to manage

information security risk, security

policies, third party connection, and

so on. Visit us as

http://smart.conformix.com

