
Open-Source Security

Some people have claimed that open-source
software is intrinsically more secure than closed
source,1 and others have claimed that it’s not.2

Neither case is absolutely true: they are essen-
tially flip sides of the same coin. Open source gives both
attackers and defenders greater analytic power to do
something about software vulnerabilities. If the defender
does nothing about security, though, open source just
gives that advantage away to the attacker.

However, open source also offers great advantages to
the defender, giving access to security techniques that are
normally infeasible with closed-source software. Closed
source forces users to accept the level of security diligence
that the vendor chooses to provide, whereas open source
lets users (or other collectives of people) raise the bar on
security as high as they want to push it.

This article surveys security enhancements that take ad-
vantage of the nature of open-source software. We’ll con-
centrate on software security (mitigation of vulnerabilities in
software), not network security (which is dealt with in terms
of line protocols and is thus unaffected by whether other
network components are open source). All the solutions
that we’ll consider apply to open-source systems, but they
may not be entirely open source themselves.

Software security is fundamentally simple: just run per-
fect software. Being that perfect software is infeasible for non-
trivial systems, we must find other means to ascertain that
large, complex, probably vulnerable software does what it
should do and nothing else. (See Ivan Arce’s “Whoa, Please
Back Up for One Second” at http://online.securityfocus.
com/archive/98/142495/2000-10-29/2000-11-04/2.) We

classify methods that
ensure and enforce
the “nothing else” part into three broad categories:

• Software auditing, which prevents vulnerabilities by
searching for them ahead of time, with or without auto-
matic analysis

• Vulnerability mitigation, which are compile-time tech-
niques that stop bugs at runtime

• Behavior management, which are operating system fea-
tures that either limit potential damage or block specif-
ic behaviors known to be dangerous

Software auditing
The least damaging software vulnerability is the one that
never happens. Thus, it is optimal if we can prevent vul-
nerabilities by auditing software for flaws from the start.
Similarly, it is near optimal to audit existing applications for
flaws and remove them before attackers discover and ex-
ploit them. Open source is ideal in this capacity, because it
enables anyone to audit the source code at will and pro-
ductively share the results of such audits with the world.

The problem with this approach is that auditing
source code for correctness, or even for common secu-
rity coding pathologies, is difficult and time-consum-
ing. It follows that assuring a given piece of security-
critical code has been audited, and by people
competent enough to effectively detect vulnerabilities,
is equally difficult.

The Sardonix project presented here was created to
address the social problems of coaxing people to audit
code and keep track of the results. Following are descrip-

CRISPIN
COWAN
WireX
Communications

Software Security
for Open-Source Systems

38 PUBLISHED BY THE IEEE COMPUTER SOCIETY � 1540-7993/03/$17.00 © 2003 IEEE � IEEE SECURITY & PRIVACY

Debate over whether open-source software development leads

to more or less secure software has raged for years. Neither is in-

trinsically correct: open-source software gives both attackers

and defenders greater power over system security. Fortunately,

several security-enhancing technologies for open-source sys-

tems can help defenders improve their security.

tions of several static and dynamic software analysis tools
(see Table 1 for a summary).

Sardonix
Sardonix.org provides an infrastructure that encourages
the community to perform security inspection of open-
source code and preserve the value of this effort by
recording which code has been audited, by whom, and
subsequent reports.

Sardonix measures auditor and program quality with a
ranking system. The auditor ranking system measures
quality by the volume of code audited and the number of
vulnerabilities missed (as revealed by subsequent audits of
the same code). Programs, in turn, are rated for trustwor-
thiness in terms of who audited them. This ranking sys-
tem encourages would-be auditors with something tan-
gible to shoot for (raising their Sardonix rank) and use on
their resumes.

Sardonix also helps novice auditors by providing a
central repository of auditing resources—specifically, de-
scriptions and links to auditing tools and how-to and
FAQ documents.

Static analyzers
Static analyzers examine source code and complain about
suspicious code sequences that could be vulnerable. Un-
like compilers for “strongly typed” languages such as Java
and ML, static analyzers are free to complain about code
that might in fact be safe. However, the cost of exuber-
antly reporting mildly suspicious code is a high false-pos-
itive rate. If the static analyzer “cries wolf” too often,
developers start treating it as an annoyance and don’t use it
much. So selectivity is desirable in a source-code analyzer.

Conversely, sensitivity is also desirable in a source-code
analyzer. If the analyzer misses some instances of the
pathologies it seeks (false negatives), it just creates a false
sense of confidence.

Thus we need precision (sensitivity plus selectivity) in a
source-code analyzer. Unfortunately, for the weakly
typed languages commonly used in open-source devel-
opment (C, Perl, and so on), security vulnerability detec-
tion is often undecidable and in many cases requires expo-
nential resources with respect to code size. Let’s look at
some source-code analyzers that use various heuristics to
function but that can never do a perfect job. Such tools are

Open-Source Security

JANUARY/FEBRUARY 2003 � http://computer.org/security/ 39

Table 1. Software auditing tools.
TOOL DOMAIN EFFECT RELEASE LICENSE URL

DATE

BOON C source analysis Static source-code analysis 2002 BSD www.cs.berkeley.edu/~daw/boon
to find buffer overflows

CQual C source analysis Static type inference 2001 GPL www.cs.berkeley.edu/~jfoster/cqual
for C code to discover
inconsistent usage of values

MOPS C source analysis Dynamically enforcing that C 2002 BSD www.cs.berkeley.edu/~daw/mops
program conforms to a static
model

RATS C, Perl, PHP, Uses both syntactic and 2001 GPL www.securesw.com/rats
and Python semantic inspection of
source analysis programs to find vulnerabilities

FlawFinder C source analysis Multiple syntactic checks for 2001 GPL www.dwheeler.com/flawfinder
common C vulnerabilities

Bunch C source analysis Program understanding and 1998 Closed-source http://serg.cs.drexel.edu/bunch
visualization to help software freeware
analyst understand program

PScan C source analysis Static detection of printf 2002 GPL www.striker.ottawa.on.ca/~aland/pscan
format vulnerabilities

Sharefuzz Binary program Stress-test programs looking 2002 GPL www.atstake.com/research/tools/index.
vulnerability for improperly checked inputs html#vulnerability_scanning
detection

ElectricFence Dynamic memory Complains about various forms 1998 GPL http://perens.com/FreeSoftware
debugger of malloc() and free() misuse

MemWatch Dynamic memory Complains about various forms of 2000 Public domain www.linkdata.se/sourcecode.html
debugger malloc() and free() misuse

Open-Source Security

perfect for assisting a human in performing a source-code
audit.

Berkeley. Researchers at the University of California at
Berkeley have developed several static analysis tools to de-
tect specific security flaws:

• BOON is a tool that automates the process of scanning
for buffer overrun vulnerabilities in C source code
using deep semantic analysis. It detects possible buffer
overflow vulnerabilities by inferring values to be part of
an implicit type with a particular buffer size.3

• CQual is a type-based analysis tool for finding bugs in C
programs. It extends the type system of C with extra
user-defined type qualifiers. Programmers annotate
their program in a few places, and CQual performs
qualifier inference to check whether the annotations
are correct. Recently, CQual was adapted to check the
consistency and completeness of Linux Security Mod-
ule hooks in the Linux kernel.4 Researchers have also
extended its use to type annotation to detect printf
format vulnerabilities.5

• MOPS (MOdel checking Programs for Security) is a
tool for finding security bugs in C programs and veri-
fying their absence. It uses software model checking to
see whether programs conform to a set of rules for de-
fensive security programming; it is currently a research
in progress.6

RATS. The Rough Auditing Tool for Security is a secu-
rity-auditing utility for C, C++, Python, Perl, and PHP
code. RATS scans source code, finding potentially dan-
gerous function calls. This project’s goal is not to find bugs
definitively. Its goal is to provide a reasonable starting
point for performing manual security audits. RATS uses
an amalgam of security checks, from the syntactic checks
in ITS47 to the deep semantic checks for buffer overflows
derived from MOPS.3 RATS is released under the GNU
Public License (GPL).

FlawFinder. Similar to RATS, FlawFinder is a static
source-code security scanner for C and C++ programs

that looks for commonly misused functions, ranks their
risk (using information such as the parameters passed), and
reports a list of potential vulnerabilities ranked by risk level.
FlawFinder is free and open-source covered by the GPL.

Bunch. Bunch is a program-understanding and visualiza-
tion tool that draws a program dependency graph to assist
the auditor in understanding the program’s modularity.

PScan. In June 2000, researchers discovered a major new
class of vulnerabilities called “format bugs.”8 The prob-
lem is that a %n format token exists for C’s printf format
strings that commands printf to write back the number
of bytes formatted to the corresponding argument to
printf, presuming that the corresponding argument
exists and is of type int *. This becomes a security issue
if a program lets unfiltered user input be passed directly as
the first argument to printf.

This is a common vulnerability because of the (previ-
ously) widespread belief that format strings are harmless.
As a result, researchers have discovered literally dozens of
format bug vulnerabilities in common tools.9

The abstract cause for format bugs is that C’s argu-
ment-passing conventions are type-unsafe. In particular,
the varargsmechanism lets functions accept a variable
number of arguments (such as printf) by “popping” as
many arguments off the call stack as they wish, trusting
the early arguments to indicate how many additional ar-
guments are to be popped and of what type.

PScan scans C source files for problematic uses of
printf style functions, looking for printf format
string vulnerabilities. (See http://plan9.hert.org/papers/
format.htm; www.securityfocus.com/archive/1/815656;
and www.securityfocus.com/bid/1387 for examples.) Al-
though narrow in scope, PScan is simple, fast, and fairly
precise, but it can miss occurrences in which printf-like
functions have been wrapped in user-defined macros.

Dynamic debuggers
Because many important security vulnerabilities are un-
decidable from static analysis, resorting to dynamic de-
bugging often helps. Essentially, this means running the

40 JANUARY/FEBRUARY 2003 � http://computer.org/security/

TOOL DOMAIN EFFECT RELEASE LICENSE URL
DATE

StackGuard Protects C Programs halt when a buffer 1998 GPL http://immunix.org/stackguard.html
source programs overflow attack is attempted

ProPolice Protects C Programs halt when a buffer 2000 GPL www.trl.ibm.com/projects/security/ssp
source programs overflow attack is attempted

FormatGuard Protects C Programs halt when a printf 2000 GPL http://immunix.org/formatguard.html
source programs format string attack is attempted

Table 2. Vulnerability mitigation tools.

Open-Source Security

program under test loads and seeing what it does. The fol-
lowing tools generate unusual but important test cases and
instrument the program to get a more detailed report of
what it did.

Sharefuzz. “Fuzz” is the notion of testing a program’s
boundary conditions by presenting inputs that are likely
to trigger crashes, especially buffer overflows and
printf format string vulnerabilities. The general idea is
to present inputs comprised of unusually long strings or
strings containing %n and then look for the program to
dump core.

Sharefuzz is a local setuid program fuzzer that auto-
matically detects environment variable overflows in Unix
systems. This tool can ensure that all necessary patches
have been applied or used as a reverse engineering tool.

ElectricFence. ElectricFence is a malloc() debugger
for Linux and Unix. It stops your program on the exact
instruction that overruns or underruns a malloc()
buffer.

MemWatch. MemWatch is a memory leak detection tool.
Memory leaks are where the program malloc()’s some
data, but never frees it. Assorted misuses of malloc() and
free() (multiple free’s of the same memory, using mem-
ory after it has been freed, and so on) can lead to vulnerabil-
ities with similar consequences to buffer overflows.

Vulnerability mitigation
All the software-auditing tools just described have a work
factor of at least several hours to analyze even a modest-
size program. This approach ceases to be feasible when
faced with millions of lines of code, unless you’re contem-
plating a multiyear project involving many people.

A related approach—vulnerability mitigation—
avoids the problems of work factor, precision, and decid-
ability. It features tools (see Table 2 for a summary) that
insert light instrumentation at compile time to detect the
exploitation of security vulnerabilities at runtime. These
tools are integrated into the compile tool chain, so pro-
grams can be compiled normally and come out pro-
tected. The work factor is normally close to zero. (Some
tools provide vulnerability mitigation and also require
the source code to be annotated with special symbols to
improve precision.5 However, these tools have the un-
fortunate combination of the high work factor of source-
code auditing tools and the late detection time of vulner-
ability mitigators.)

StackGuard
StackGuard appears to have been the first vulnerability
mitigation tool.10 It is an enhancement to the GCC (the
GNU Compiler Collection; http://gcc.gnu.org) C com-
piler that emits programs resistant to the “stack smashing”

variety of buffer overflows.11

StackGuard detects stack-smashing buffer overflows in
progress via integrity checks on the function calls’ activa-
tion records, introducing the “canary” method of in-
tegrity checking (see Figure 1). The compiler emits code
that inserts canaries into activation records when func-
tions are called and checks for them when those functions
return. If a stack-smashing overflow occurs while the
function is active, the canary will be smashed and the
function return code will abort the program rather than
jumping to the address indicated by the corrupted activa-
tion record.

StackGuard has been in wide use since summer 1998.
Developers have used it to build complete Immunix
Linux distributions based on Red Hat 5.2, 6.2, and 7.0.
However, StackGuard 2 (the current release) is based on
GCC 2.91.66, and, as of this writing, a port to GCC 3.2 is
almost complete. StackGuard is released under the GPL.

ProPolice
ProPolice is an independent implementation similar to
StackGuard. It adds several features, the most significant
of which are

• Moving the canary. ProPolice places the canary be-
tween the activation record and the local variables,
rather than in the middle of the activation record.
StackGuard 3 will include this feature.

• Sorting variables. ProPolice sorts the variables in each
function to put all the character arrays (strings) above
other variables in memory layout. The goal is to prevent
buffer overflows from corrupting adjacent variables. It
has limited effectiveness, because ProPolice cannot
move strings embedded within structures and because
the attacker can still corrupt adjacent strings.

StackGuard injects instructions late in the GCC com-
piler’s RTL stage, taking great care to ensure that the com-
piler does not optimize away or otherwise defeat the ca-
nary checks. ProPolice, in contrast, injects the canary

JANUARY/FEBRUARY 2003 � http://computer.org/security/ 41

Stack
growth

Attack
code

FFFF

0000

return
address
canary
Local
variables
buffer

String
growth

Figure 1. The
StackGuard
defense against
stack-smashing
attack.

Open-Source Security

checks into GCC’s abstract syntax tree layer, introducing
the risk that the compiler can disrupt the canary checks to
the point of being ineffective.

FormatGuard
FormatGuard is similar to StackGuard in that it detects
and halts exploitation of printf format string vulnera-
bilities in progress.12 FormatGuard was the first vulnera-
bility mitigation for printf format bugs. It uses CPP (C
PreProcessor) macros to implement compile-time argu-
ment counting and a runtime wrapper around printf
functions that match the expected number of arguments
in the format string against the actual number of argu-
ments presented. FormatGuard is available as a version of
glibc under the LGPL.

Behavior management
Behavior management describes protections that func-
tion entirely at runtime, usually enforced by libraries or
the operating system kernel. The Linux Security Mod-
ules project (LSM), presented here enables behavior
management modules to be loaded into standard Linux
2.5 and 2.6 kernels. After that are some leading access
control systems and some behavior management systems
that are not exacly access control but that do provide ef-
fective security protection against various classes of soft-
ware vulnerability. Table 3 summarizes the available be-
havior management tools.

LSM: Linux Security Modules
Linux’s wide popularity and open-source code have made
it a common target for advanced access control model re-
search. However, advanced security systems remain out
of reach for most people. Using them requires the ability
to compile and install custom Linux kernels, a serious bar-
rier to entry for users whose primary business is not Linux
kernel development.

The Linux Security Modules (LSM) project13 was de-
signed to address this problem by providing a common
modular interface in the Linux kernel so that people
could load advanced access control systems into standard
Linux kernels; end users could then adopt advanced secu-
rity systems as they see fit. To succeed, LSM must satisfy
two goals:

• Be acceptable to the Linux mainstream. Linus Torvalds
and his colleagues act as a de facto standards body for the
Linux kernel. Adding an intrusive feature such as LSM
requires their approval, which, in turn, requires LSM to
be minimally intrusive to the kernel, imposing both small
performance overhead and small source-code changes.
LSM was designed from the outset to meet this goal.

• Be sufficient for diverse access controls. To be useful,
LSM must enable a broad variety of security models to
be implemented as LSM modules. The easy way to do
this is to provide a rich and expressive application pro-
gramming interface. Unfortunately, this directly con-

42 JANUARY/FEBRUARY 2003 � http://computer.org/security/

TOOL DOMAIN EFFECT RELEASE LICENSE URL
DATE

LSM Linux 2.5 and Enables behavior management 2002 GPL http://lsm.immunix.org
2.6 kernels modules to be loaded into standard

Linux kernels

Type Linux and Map users to domains and files to 1986 Subject www.cs.wm.edu/~hallyn/dte
Enforcement BSD kernels types; mitigate domain/type access to several

patents; GPL

SELinux Linux kernels Type enforcement and role-based 2000 Subject www.nsa.gov/selinux
supporting LSM access control for Linux to several
modules patents; GPL

SubDomain Linux kernels Confines programs to access only 2000 Proprietary www.immunix.org/subdomain.html
specified files

LIDS Linux kernels Critical files can only be modified 2000 GPL www.lids.org
by specified programs

Openwall Linux 2.2 kernels Prevents pathological behaviors 1997 GPL www.openwall.com

Libsafe glibc library Plausibility checks on calls to 2000 LGPL www.research.avayalabs.com/project/
common string manipulation libsafe
functions

RaceGuard Linux kernels Prevents temporary file race attacks 2001 GPL http://immunix.org

Systrace BSD kernels Controls the system calls and 2002 BSD www.citi.umich.edu/u/provos/systrace
arguments a process can issue

Table 3. Behavior management systems.

Open-Source Security

flicts with the goal of being minimally intrusive. In-
stead, LSM met this goal by merging and unifying the
API needs of several different security projects.

In June 2002, Linus Torvalds agreed to accept LSM
into Linux 2.5 (the current development kernel), so it will
most likely be a standard feature of Linux 2.6 (the next
scheduled production release).

Access controls
The Principle of Least Privilege14 states that each opera-
tion should be performed with the least amount of privi-
lege required to perform that operation. Strictly adhered
to, this principle optimally minimizes the risk of compro-
mise due to vulnerable software. Unfortunately, strictly
adhering to this principle is infeasible because the access
controls themselves become too complex to manage. In-
stead, a compromise must be struck between complexity
and expressability. The standard Unix permissions
scheme is very biased toward simplicity and often is not
expressive enough to specify desired least privileges.

Type enforcement and DTE. Type enforcement intro-
duced the idea of abstracting users into domains, abstract-
ing files into types, and managing access control in terms
of which domains can access which types.15 DTE (Do-
main and Type Enforcement16) refined this concept.
Serge Hallyn is writing an open-source reimplementa-
tion of DTE, ported to the LSM interface (see www.
cs.wm.edu/hallyn/dte).

Intellectual property issues surrounding type enforce-
ment are complex. Type enforcement and DTE are both
subject to several patents, but implementations have also
been distributed under the GPL. The ultimate status of
these issues is still unclear.

SELinux. SELinux evolved from type enforcement at Se-
cure Computing Corporation, the Flask kernel at the
University of Utah, and is currently supported by NAI
(http://nai.com) under funding from the US National
Security Agency. SELinux incorporates a rich blend of
security and access control features, including type en-
forcement and RBAC (Role-Based Access Control17).
The SELinux team has been instrumental in the develop-
ment of the LSM project and distributes SELinux exclu-
sively as an LSM module.

SubDomain. SubDomain is access control streamlined
for server appliances.18 It ensures that a server appliance
does what it is supposed to and nothing else by enforcing
rules that specify which files each program may read from,
write to, and execute.

In contrast to systems such as DTE and SELinux, Sub-
Domain trades expressiveness for simplicity. SELinux can
express more sophisticated policies than SubDomain, and

should be used to solve complex multiuser access control
problems. On the other hand, SubDomain is easy to man-
age and readily applicable. For instance, we entered an Im-
munix server (including SubDomain) in the Defcon Cap-
ture-the-Flag contest19 in which we wrapped SubDomain
profiles around a broad variety of badly vulnerable software
in a period of 10 hours. The resulting system was never pen-
etrated. SubDomain is being ported to the LSM interface.

The Linux Intrusion Detection System. LIDS started
out with an access model that would not let critical files be
modified unless the process’s controlling tty was the
physical console. Because this severely limited anything
other than basement computers, LIDS extended its de-
sign to let specified programs manipulate specified files
similar to the SubDomain model. LIDS has been ported
to the LSM interface.

Behavior blockers
Behavior blockers prevent the execution of certain spe-
cific behaviors that are known to (almost) always be asso-
ciated with software attacks. Let’s look at a variety of be-
havior-blocking techniques implemented for open-
source systems.

Openwall. The Openwall project is a security-enhancing
patch to the Linux kernel comprised of three behavior
blockers:

• Nonexecutable stack segment. Legacy factors in the
Intel x86 instruction set do not permit separate read and
execute permissions to be applied to virtual memory
pages, making it difficult for x86 operating systems to
make data segments nonexecutable. Openwall cleverly
uses the x86 segment registers (which do allow separate
read and execute attributes) to remap the stack segment
so that data on the stack cannot be executed.

• Non-root may not hard link to a file it does not own.
This prevents one form of temporary file attack in which
the attacker creates a link pointing to a sensitive file such
that a privileged program might trample the file.

• Rootmay not follow symbolic links. This prevents an-
other form of temporary file attack.

The latter two features have been ported to the LSM
interface in the form of the OWLSM module.
OWLSM—a pun on Openwall’s abbreviation (OWL) and
LSM—in turn has been augmented with a “no ptrace
for root processes” policy, which defends against chronic
bugs in the Linux kernel’s ptrace handling.

Libsafe. Libsafe is a library wrapper around glibc
standard functions that checks argument plausibility to
prevent the glibc functions from being used to dam-
age the calling program.19 Libsafe 2.0 can stop both

JANUARY/FEBRUARY 2003 � http://computer.org/security/ 43

Open-Source Security

buffer overflows and printf format string vulnerabil-
ities by halting the function if it appears to be about to
overwrite the calling activation record. Its main limita-
tion is that its protection is disabled if programs are
compiled with the -fomit-frame-pointer switch,
commonly used to give the GCC/x86 compiler one
more register to allocate.

RaceGuard. Temporary file race attacks are where the
attacker seeks to exploit sloppy temporary file creation
by privileged (setuid) programs. In a common form
of temporary file creation, a time gap exists between a
program checking for a file’s existence and the program
actually writing to that file.20 RaceGuard defends
against this form of attack by transparently providing
atomic detection and access to files—preventing the at-
tacker from “racing” in between the read and the
write.21 We provide efficient atomic access by using
optimistic locking: we let both accesses go through but
abort the second write access if it is mysteriously point-
ing to a different file than the first access.22 RaceGuard
is being ported to the LSM interface.

Systrace. Systrace is a hybrid access control and behavior
blocker for OpenBSD and NetBSD. Similar to SubDo-
main, it allows the administrator to specify which files
each program can access. However, Systrace also lets the
administrator specify which system calls a program can
execute, allowing the administrator to enforce a form of
behavior blocking.

Integrated systems
These tools all require some degree of effort to integrate
into a system, ranging from RaceGuard and Openwall,
which just drop in place and enforce security-enhancing
policies, to the access control systems that require detailed
configuration. Let’s look at three products that integrate
some of these tools into complete working systems.

OpenBSD
OpenBSD’s core philosophy is the diligent application of
manual best security practices (see www.openbsd.org).
The entire code base went through a massive manual
source-code audit. The default install enables few net-
work services, thus minimizing potential system vulnera-
bility in the face of random software vulnerabilities.

OpenBSD also features a jail() system, which is
similar to the common chroot() confinement mecha-
nism. More recently, Systrace was added to OpenBSD.
The OpenBSD project also provided the open-source
community with OpenSSH, an open-source version of
the popular SSH protocol, recently upgrading OpenSSH
to use “privilege separation” to minimize vulnerability
due to bugs in the SSH daemon. OpenBSD is completely
open-source software.

OWL: Openwall Linux
OWL is similar to OpenBSD in philosophy (audited
source code and a minimal install/configuration) but is
based on Linux instead of BSD. It uses the Openwall be-
havior blockers.

Immunix
To stay relatively current with fresh software releases, Im-
munix does not use any source-code auditing. Instead, it
compiles all code with vulnerability mitigators (Stack-
Guard and FormatGuard) and behavior management
(SubDomain and RaceGuard) to block most vulnerabili-
ties from being exploitable. WireX has an ongoing re-
search program to develop new and improved software
security technologies. Although many components are
open source, the Immunix system is commercial software.

EnGarde
EnGarde is a commercial Linux distribution hardened
with LIDS access controls.

Discussion points
All these tools were developed for or around open-source
systems, but they are variably applicable to proprietary sys-
tems, requiring either access to application source code or
modifications to the operating system kernel or libraries.

Vulnerability mitigation
Microsoft “independently innovated” the StackGuard
feature for the Visual C++ 7.0 compiler.23 In principle,
this delivers the same protective value as in open-source
systems, but in practice only the code’s purveyors can
apply the protection, because no one else has the source
code to compile with.

Behavior managers
Several commercial vendors are now providing defenses
marketed as “host intrusion prevention.” Two such ven-
dors are Entercept (a behavior blocker that blocks a list of
known vulnerabilities) and Okena (a profile-oriented
mandatory access control system, similar to Systrace).

Here, open source’s advantage is relatively weak: being
able to read an application’s source code can somewhat
help in creating a profile for the application, but it is not
critical. The main advantage of open source is that it is rel-
atively easy for researchers and developers to add these
kinds of features to open-source operating systems.

Open-source software presents both a threat and an op-
portunity with respect to system security. The threat

is that the availability of source code helps the attacker cre-
ate new exploits more quickly. The opportunity is that the
available source code enables defenders to turn up their de-
gree of security diligence arbitrarily high, independent of

44 JANUARY/FEBRUARY 2003 � http://computer.org/security/

vendor preferences.
The opportunity afforded by open-source systems to

raise security arbitrarily high is revolutionary and not to
be missed by organizations seeking high security. No
longer locked into what a single vendor offers, users can
choose to apply security-enhancing technologies to their
systems or choose an open-source system vendor that in-
tegrates one or more of these technologies to produce
higher-security systems that remain compatible with
their unenhanced counterparts.

Acknowledgments
DARPA contract F30602-01-C-0172 supported this work in part.

References
1. E.S. Raymond, The Cathedral & the Bazaar: Musings on

Linux and Open Source by an Accidental Revolutionary,
O’Reilly & Assoc., 1999; www.oreilly.com/catalog/cb.

2. K. Brown, Opening the Open Source Debate, Alexis de Toc-
queville Inst., 2002; www.adti.net/cgi-local/SoftCart.
100.exe/online-store/scstore/p- brown_% 1.html?L+
scstore+llfs8476ff0a810a+1042027622.

3. D. Wagner et al., “A First Step Towards Automated Detec-
tion of Buffer Overrun Vulnerabilities,” Network and Dis-
tributed System Security, 2000; www.isoc.org.

4. X. Zhang, A. Edwards, and T. Jaeger, “Using CQUAL for
Static Analysis of Authorization Hook Placement,” Usenix
Security Symp., Usenix Assoc., 2002, pp. 33–47.

5. U. Shankar et al., “Automated Detection of Format-String
Vulnerabilities,” Usenix Security Symp., Usenix Assoc.,
2001, pp. 201–216.

6. H. Chen and D. Wagner, “MOPS: An Infrastructure for
Examining Security Properties of Software,” Proc. ACM
Conf. Computer and Communications Security, ACM Press,
2002.

7. J. Viega et al., “ITS4: A Static Vulnerability Scanner for
C and C++ Code,” Ann. Computer Security Applications
Conf. (ACSAC), Applied Computer Security Assoc., 2000;
www.cigital.com/its4.

8. C. Cowan, “Format Bugs in Windows Code,” Vuln-dev
mailing list, 10 Sept. 2000; www.securityfocus.com/
archive/82/81455.

9. S. Shankland, “Unix, Linux Computers Vulnerable to
Damaging New Attacks,” Cnet, 7 Sept. 2000; http://
yahoo.cnet.com/news/0-1003-200-2719802.html?pt.
yfin.cat_fin.txt.ne.

10.C. Cowan et al., “StackGuard: Automatic Adaptive
Detection and Prevention of Buffer-Overflow Attacks,”
7th Usenix Security Conf., Usenix Assoc., 1998, pp. 63–77.

11.“Smashing the Stack for Fun and Profit,” Phrack, vol. 7,
Nov. 1996; www.phrack.org.

12.C. Cowan et al., “FormatGuard: Automatic Protection
from printf Format String Vulnerabilities,” Usenix Secu-
rity Symp., Usenix Assoc., 2001, pp. 191–199.

13.C. Wright et al., “Linux Security Modules: General Secu-

rity Support for the Linux Kernel,” Usenix Security Symp.,
Usenix Assoc., 2002, pp. 17–31; http://lsm.immunix.org.

14. J.H. Saltzer and M.D. Schroeder, “The Protection of
Information in Computer Systems,” Proc. IEEE, vol. 63,
Nov. 1975, pp. 1278–1308.

15.W.E. Bobert and R.Y. Kain, “A Practical Alternative to
Hierarchical Integrity Policies,” Proc. 8th Nat’l Computer
Security Conf., Nat’l Inst. Standards and Technology, 1985.

16.L. Badger et al., “Practical Domain and Type Enforce-
ment for Unix,” Proc. IEEE Symp. Security and Privacy,
IEEE Press, 1995.

17.D.F. Ferraiolo and R. Kuhn, “Role-Based Access Con-
trol,” Proc. 15th Nat’l Computer Security Conf., Nat’l Inst.
Standards and Technology, 1992.

18.C. Cowan et al., “SubDomain: Parsimonious Server Secu-
rity,” Usenix 14th Systems Administration Conf. (LISA),
Usenix Assoc., 2000, pp. 355–367.

19. A. Baratloo, N. Singh, and T. Tsai, “Transparent Run-
Time Defense Against Stack Smashing Attacks,” 2000
Usenix Ann. Technical Conf., Usenix Assoc., 2000, pp.
257–262.

20.M. Bishop and M. Digler, “Checking for Race Condi-
tions in File Accesses,” Computing Systems, vol. 9, Spring
1996, pp. 131–152; http://olympus.cs.ucdavis.edu/
bishop/scriv/index.html.

21.C. Cowan et al., “RaceGuard: Kernel Protection from
Temporary File Race Vulnerabilities,” Usenix Security
Symp., Usenix Assoc., 2001, pp. 165–172.

22.C. Cowan and H. Lutfiyya, “A Wait-Free Algorithm for
Optimistic Programming: HOPE Realized,” 16th Int’l
Conf. Distributed Computing Systems (ICDCS’96), IEEE
Press, 1996, pp. 484–493.

23.B. Bray, How Visual C++ .Net Can Prevent Buffer Over-
runs, Microsoft, 2001.

Crispin Cowan is cofounder and chief scientist of WireX. His
research interests include making systems more secure without
breaking compatibility or compromising performance. He has
coauthored 34 refereed publications, including those describing
the StackGuard compiler for defending against buffer overflow
attacks. He has a PhD in computer science from the University
of Western Ontario. Contact him at WireX, 920 SW 3rd Ave.,
Ste. 100, Portland, OR 97204; crispin@wirex.com; http://
wirex.com/~crispin.

Open-Source Security

JANUARY/FEBRUARY 2003 � http://computer.org/security/ 45

Members
save
25%

on all conferences sponsored
by the IEEE Computer Society.

Not a member? Join online today!

Members
save
25%

on all conferences sponsored
by the IEEE Computer Society.

Not a member? Join online today!

computer.org/join/

