Reti di Calcolatori e Sicurezza

5. Autenticazione

Cap. 9,20(seconda metà) SchneierCapitolo 7 Kurose

Autenticazione

- Stabilisce l'identità di una "parte" ad un'altra
- Le parti possono essere utenti o computer
 - 1. computer-computer (stampa in rete, delega,...)
 - 2. utente-utente (protocolli di sicurezza, ...)
 - 3. computer-utente (autenticare un server web,...)
 - 4. utente-computer (per accedere a un sistema...)
- Spesso richieste varie combinazioni
- Proprietà primaria
 - □ Richiesta da un corretto controllo d'accesso

Tipi di authenticazione

- Locale
 - □ Desktop systems
- Diretta
 - ☐ Sul server (file, login, ..)
- Indiretta
 - □ Windows domain, radius, kerberos, nis
- Off-line

- Protocollo di autenticazione
 - U → S : username
 - 2. $S \rightarrow U$: challenge
 - 3. $U \rightarrow S$: response

- Protocollo di autenticazione indiretto
 - U → S_R: logon request (chi sono e cosa voglio)
 - \square $S_R \rightarrow S_A$: authentication request
 - \square $S_A \rightarrow S_R$: authentication response (A/R)
 - \Box $S_R \rightarrow U$: logon response

Computer-utente – esempio

Bob intende autenticare il server web della sua banca

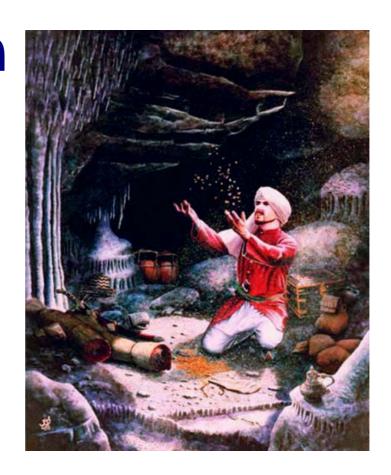
- 1. Bob invia una richiesta al server
- 2. Il server replica con qualcosa del tipo {"salve Bob, sono il server web della tua banca"}K-1bancaxy
- 3. Bob scarica il certificato per la chiave pubblica della banca {"banca XY", Kbancaxy}K-1CA lo verifica ed estrae Kbancaxy
- 4. Bob usa la chiave ottenuta al passo 3 per verificare il certificato ottenuto al passo 2
- 5. Se Bob ottiene qualcosa di intelligibile, allora autentica il server, altrimenti no

Autenticazione utente-computer

Basata su qualcosa che l'utente

- 1. Conosce: segreti
 - □ Password, PIN, ...

- 2. Possiede: cose fisiche o elettroniche
 - □ Chiavi convenzionali, carte magnetiche o smart
- 3. E': caratteristiche biometriche
 - □ Impronte digitali, dell'iride, tono di voce,...

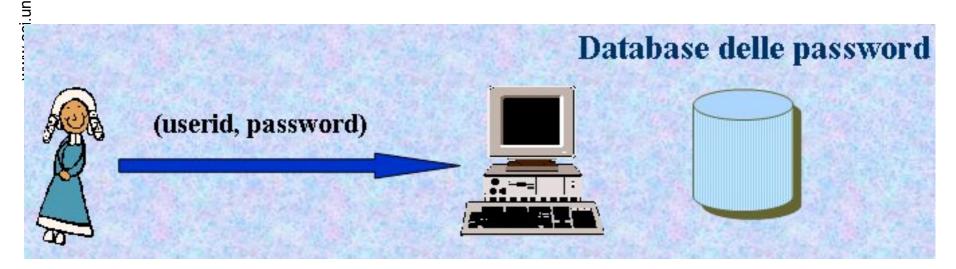


What I know

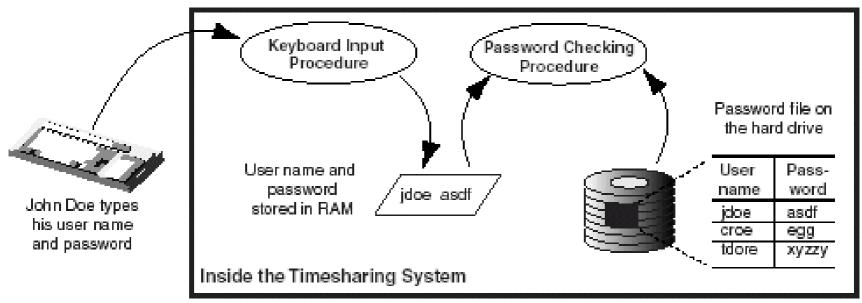
Authentication

- Come un sistema può associare con certezza una identità ad una persona
 - □ Password: uso antico!!

Apriti Sesamo!

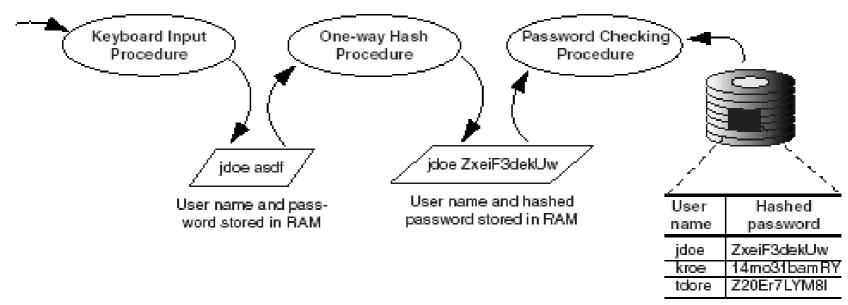

1. Autenticazione su conoscenza

- Conoscenza fornisce prova dell'identità
- Coppia userid-password
- Antico e diffuso
- Semplice da implementare
- Economico
- Debole


Gestione delle password

Il sistema deve memorizzare una rappresentazione delle password. Come??

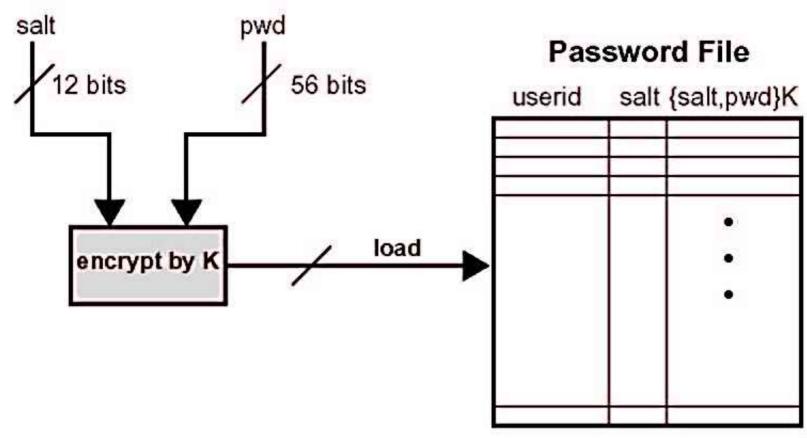
- 1960, MIT
- Password memorizzate in chiaro su file di sistema protetto da politica di sicurezza


CTSS

- Limiti intrinseci
 - Il controllo d'accesso si basa sull'autenticazione (sempre)
 - ☐ L'autenticazione si basa sul controllo d'accesso (CTSS)
- La storia registra numerose violazioni di questo schema
 - Memorizzate in chiaro in un file protetto!!

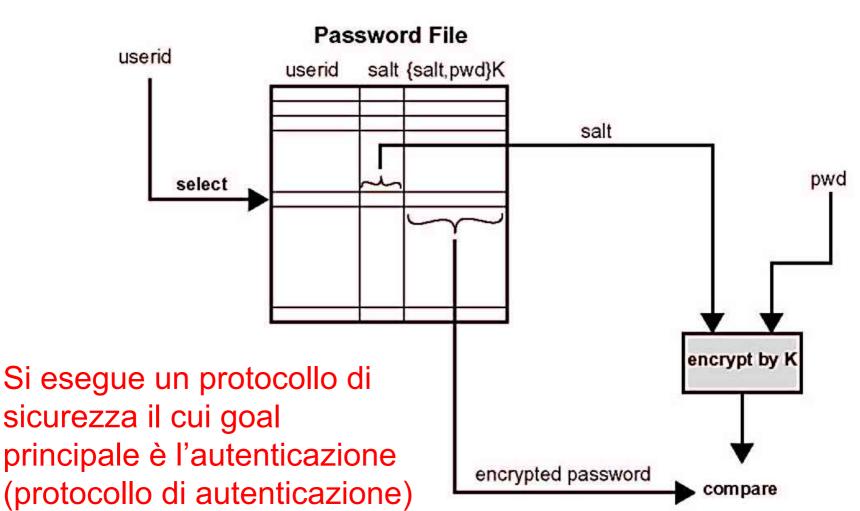
CTSS + hashing

- 1967, Cambridge University
- Il file delle password memorizzi l'hash delle password

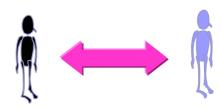


Password in Unix (cenni)

- Memorizzate codificate insieme a salt
- Salt: sequenza di bit generata dal sistema
- Siffatto file delle password memorizzato in directory "shadow", in nessun modo accessibile da alcun utente eccetto "root"



Unix: aggiunta di nuova password


Si esegue un protocollo di sicurezza

Unix: verifica di una password

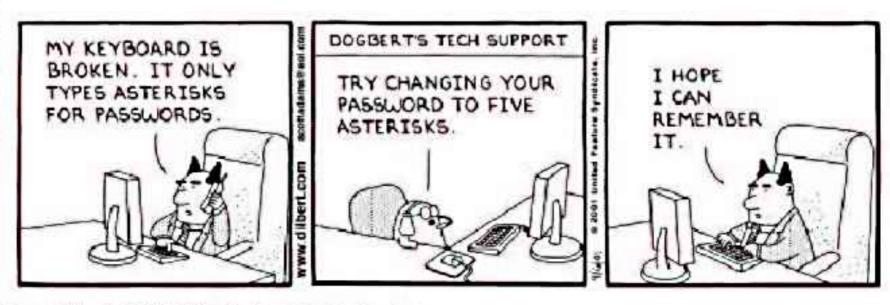
Pericoloso??

- Inserimento utenti
 - No password
 - Default password
 - Inserita dall'utente al momento della consegna
 - Consegnata dall'amministratore
 - Obbligo di modifica
 - □ Entro un certo tempo max
 - Controllo della password scelta
 - □ Lunghezza, caratteri,

Vulnerabilità delle password ...

- Le password rischiano
 - 1. Guessing: indovinate (dizionario)
 - Snooping: sbirciate mentre vengono inserite (Shoulder surfing)
 - 3. Sniffing: intercettate durante trasmissione in rete (Keystroke sniffing)
 - 4. Spoofing: acquisite da terze parti che impersonano l'interfaccia di login (Trojan login)
 - 5. Van Eck sniffing
- Chiunque conosca la password di un utente può impersonare in toto quell'utente col sistema!

... E difese


- Guessing attack
 - □ Audit-log
 - □ Limite agli sbagli
- Social enginerring
 - Cambio password abilitato solo in specifiche circostanze
 - □ Policy!!!

- Sniffing attack
 - Shoulder surfing
 - Password blinding
 - □ Keystroke sniffing
 - Memory protection
- Trojan login
 - □ Special key to login
- Offline dictionary attack
 - ☐ Shadow password (unix)

Scelta della password

Delicata a causa dei rischi di guessing

Copyright 🛭 2001 United Feature Syndicate, Inc.

Norme fondamentali

- 1. Cambiare password frequentemente
- 2. Non condividere la password con altri
- Non usare la stessa password per autenticazioni diverse
- 4. Usare almeno 8 caratteri
- 5. Non usare una parola del dizionario
- 6. Bilanciare
 - Semplicità (facile da ricordare, non serve trascriverla)
 - Complessità (difficile da intuire, robusta verso guessing)

Controlli automatici su password

- Restrizioni sulla lunghezza e sul minimo numero di caratteri
 - □ Richiesta combinazione di caratteri alfanumerici
- Controllo rispetto a dizionari
 - □ Rifiuto delle parole del linguaggio naturale
- Verifica del massimo tempo di validità
 - L'utente deve cambiare la password quando scade

Alternativa ai controlli

- La password sia generata da un apposito sistema in maniera pseudorandom
 - □ Non sempre ben accetto (difficoltà nel ricordare)
- Ricorrere a one-time password (monouso)
 - □ Distribuzione improponibile per un uso continuativo

Tecniche di violazione

- Tentativi standard: indipendenti dall'utente
 - Password tipiche, parole brevi (1-3 caratteri), parole in un dizionario elettronico (decine di migliaia)
- Tentativi non-standard: informazioni sull'utente
 - □ Hobby, nomi parenti, compleanno, indirizzi, numeri di polizze, di targhe, di telefono,...

Distribuzione iniziale di password

L'utente si reca dall'amministratore e si autentica tradizionalmente

L'amministratore prepara l'account e l'utente digita la password

□ Rischio potenziale per il sistema!

L'amministratore prepara l'account e sceglie la password iniziale

□ L'utente la cambierà al primo utilizzo

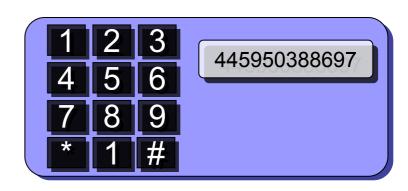
Thanks to Giampaolo Bella for slides

2. Autenticazione su possesso

- Possesso di un token fornisce prova dell'identità
 - □ Carte magnetiche
 - □ Smart card
 - □ Smart token
- Ogni token memorizza una chiave (pwd)
- Recente e poco diffuso
- Non proprio economico
- Più robusto delle password

Pro e contro del sistema

- L'autenticazione dimostra solo l'identità del token, non quella dell'utente
 - □ Token persi, rubati, falsificati
 - □ Rubando un token si impersona l'utente
- + Idea: combinare possesso e conoscenza
 - □ Bancomat: carta + PIN
- Vantaggio: molto difficile estrarre un segreto da un token



Tipi di token

- Carte magnetiche (obsolete)
- Smart card per memorizzare pwd robusta
 - Memory card: ha una memoria ma non capacità computazionali
 - Impossibile controllare o codificare il PIN
 - PIN trasmesso in chiaro soggetto a sniffing
 - Microprocessor card: ha memoria e microprocessore
 - Possibile controllo o codifica PIN
- Smart token

Smart token

- Protetto da PIN
- Microprocessor card + tastierina e display
- Vero e proprio computer!
- Svantaggi: costoso e fragile

Smart token – funzionamento

- Chiave segreta (seme) memorizzata dalla fabbrica, condivisa col server
- Prende info esterne (PIN, ora,...) per generare one-time password
- Password sul display, rinnovata ogni 30-90 secondi
- Sincronizzazione col server grazie a seme ed algoritmo comune

Smart token commerciali

Thanks to Giampaolo Bella for slides draft!!

3. Autenticazione su caratteristiche

- Possesso di caratteristiche univoche fornisce prova dell'identità
 - □ Fisiche: impronte digitali, forma della mano, impronta della retina o del viso, ...
 - □ Comportamentali: firma, timbro di voce, scrittura, "keystroke dynamic",...
- Tecnica moderna e promettente
- Template: rappresentazione digitale delle caratteristiche univoche del dato biometrico

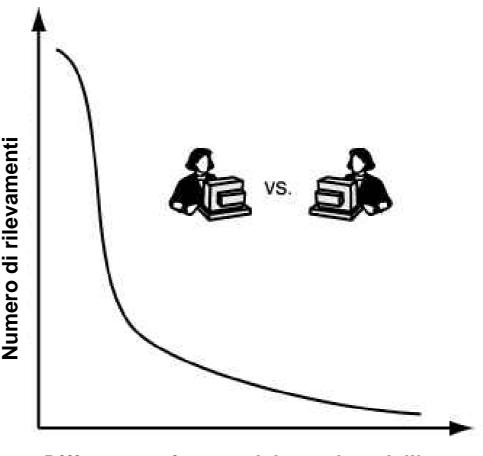
Funzionamento

- Fase iniziale di campionamento
 - Esecuzione di più misurazioni sulla caratteristica d'interesse
 - □ Definizione di un template
- Autenticazione: confronto fra la caratteristica appena misurata rispetto al template
- Successo se i due corrispondono a meno di una tolleranza, che va definita attentamente
- Perfetta uguaglianza tecnicamente imposs.

Problema

- Confrontare la caratteristica appena misurata dall'utente col template di quell'utente
- Distinguendola dal template di un altro utente!

Today's	
Biometric	
Signature	
rom Cathy:	
389	
416	
501	
468	
353	

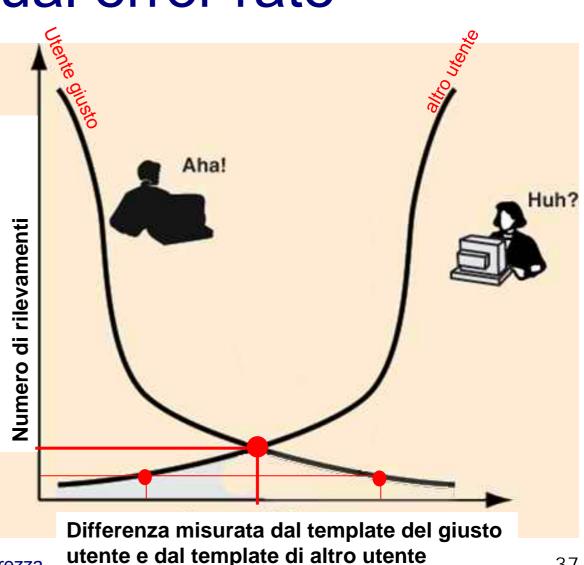

Cathy's
Stored
Biometric
Pattern:
390
418
502
471
355
Distance = 4
from that
signature

Tim's
Stored
Biometric
Pattern:
284
570
534
501
399
Distance = 199
from that
signature

Rilevamenti

Aumentando il numero di rilevamenti in fase di autenticazione diminuisce la distanza dal template del giusto utente

Differenza misurata dal template dell'utente


Rilevamenti

Aumentando il numero di rilevamenti in fase di autenticazione aumenta la distanza dal template di un altro utente

Punto di "equal error rate"

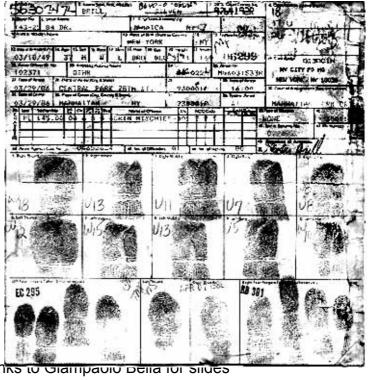
- Vorremmo diminuire i rilevamenti per praticità
- Però arriviamo al punto di massima indecisione!

Discussione

- Forma di autenticazione più forte anche se tecnicamente meno accurata
 - □ Eliminate in pratica le impersonificazioni
- Ancora poco utilizzata: costosa e intrusiva
 - Non sempre accettata dagli utenti
 - □ Gli scanner di retina sono accurati ma si temono conseguenze sulla retina...
- Dibattiti politici e sociali per potenziale mancanza di privacy

Esempio: le impronte digitali

- Piccole righe che si formano su mani e piedi ancor prima della nascita
- Restano inalterate per tutta la vita dell'individuo (a meno di incidenti)
- Il pattern presente sulle dita è unico per ogni individuo
- Il riconoscimento di impronte digitali è uno dei metodi più comuni ed affidabili per il riconoscimento di identità Thank


Thanks to Giampaolo Bella for slides draft!!

Dall'inchiostro...

 Una volta si premeva il dito sull'inchiostro e poi sulla carta con movimento rotatorio

... ai lettori ottici

 Ora basta poggiare un attimo il dito sul lettore

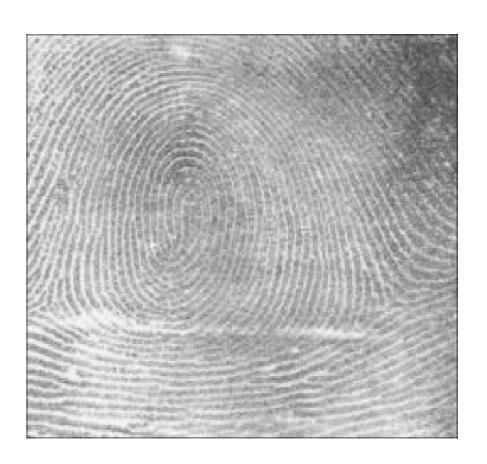
Classificazioni di impronte

Classificate in tre grandi gruppi in base allo "schema" predominante

Schema Loop

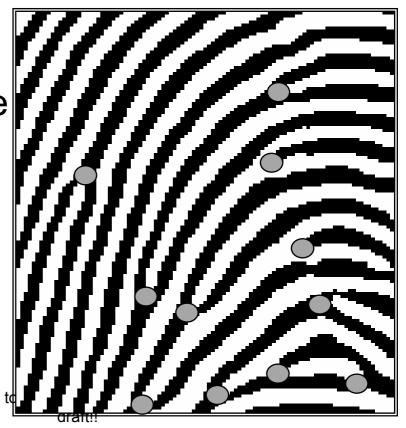
- Schemi circolari che escono verso l'esterno
- Caratterizza circa il 60% della popolazione

Schema Arch


- Cerchi che escono da entrambi i lati
- Raro: caratterizza solo il 5% della popolazione

Schema Whorl

- Cerchi concentrici, nessuna linea esce dall'immagine
- Caratterizza circa il 35% della popolazione



Riconoscimento di impronte

 Necessita di algoritmi avanzati per il riconoscimento delle immagini digitali

Minuzie

- □rappresentano la fine e il punto di biforcazione delle linee
- uniche per individuo
- standard nei sistemi di riconoscimento

Quale tecnica di autenticazione?

- Tecnicamente la più forte è quella basata sulle caratteristiche univoche dell'utente
- Bilancio costi-benefici: metodi più deboli possono andare bene in certi casi
- Le password sono il meccanismo più antico ma sono e saranno nel breve futuro quello più utilizzato

Aggiunta di autenticazione!

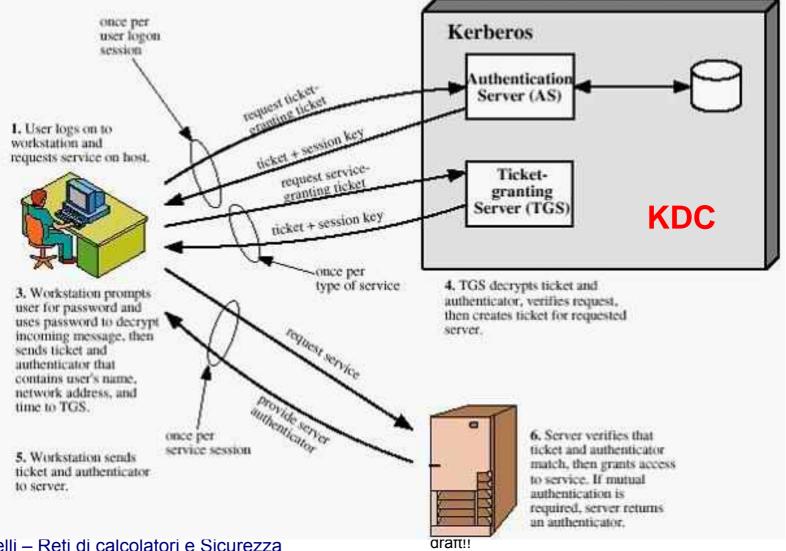
- Una password per accedere al sistema
- Una per accedere al file system
- Una per la rete
- La stampa
- La posta
- ...

Scomodo! Ancor peggio con token!

Accesso singolo

Def. Usare unica credenziale di autenticazione per accedere a tutti i servizi

- Soluzione comoda ma poco robusta
 - Un'unica password per tutto
- Kerberos è un protocollo reale che si occupa di questo problema (e non solo)



- In mitologia Greca: cane a tre teste guardiano delle porte dell'Ade
- Goal: segretezza, autentica (ad accesso singolo), temporalità
 - □ le chiavi usate hanno validità limitata onde prevenire replay attack
- Usa i timestamp, che richiedono macchine sincronizzate, contro replay attack

Kerberos – schema

2. AS verifies user's access right in database, creates ticket-granting ticket and session key. Results are encrypted using key derived from user's password.

Kerberos – caratteristiche

- 3 fasi: autenticazione, autorizzazione, servizio
- Ultime 2 opzionali e trasparenti all'utente
- Ognuna fornisce credenziali per successiva
 - □ Fase I fornisce authKey e authTicket per la II
 - □ Fase II fornisce servKey e servTicket per la III
- Ogni tipo di chiave di sessione ha sua durata
- Una authKey può criptare diverse servKey

Kerberos – eventi

I. AUTENTICAZIONE

 $1.A \rightarrow AS : A,TGS,T1$

2. AS \rightarrow A: {authK,TGS,Ta,{A,TGS,authK,Ta}K_{tgs}}K_a

authTicket

II. AUTORIZZAZIONE

authTicket

autenticatore 1

 $3.A \rightarrow TGS : \{A,TGS,authK,Ta\}K_{tgs}, \{A,T2\}authK, B$

 $4.\,TGS \rightarrow A: \{servK,B,Ts,\{A,B,servK,Ts\}K_b\} \\ authK$

servTicket

III. SERVIZIO

servTicket

autenticatore 2

5. A \rightarrow B : {A,B,servK,Ts}K_b, {A,T3}servK

 $6.B \rightarrow A : \{T3+1\}servK$

Thanks to Giampaolo Bella for slides

Kerberos – gestione delle chiavi

- AS genera authK al tempo Ta TGS genera servK al tempo Ts
- Validità
 - □ di authK (ossia di Ta) in ore, diciamo La
 - □ di servK (ossia di Ts) in minuti, diciamo Ls
 - □ di un autenticatore (ossia di T1, T2 e T3) in sec.
- Tgs può generare servK solo qualora sia Ts + Ls ≤ Ta + La altrimenti problema di cascata dell'attacco

Cascade attack

Def. Un attacco ne provoca altri direttamente

- Supponiamo che C abbia violato una chiave di sessione (di autorizzazione) scaduta authK che B condivise con A
- Con semplice decodifica ottiene servK ancora valida se non si impone Ts + Ls ≤ Ta + La

III. SERVICE

5. $C \rightarrow B : \{A,B,servK,Ts\}Kb, \{A,T3'\}servK$

6. $B \rightarrow A : \{T3'+1\}$ servK (intercettato)

C può accedere a B per la durata residua di Ls

Discussione

- Replay attack su N-S simmetrico nell'ipotesi che chiavi di sessione vecchie siano insicure
 - □ Vecchio: genericamente, del passato non esiste temporalità
- Cascade attack su Kerberos nell'ipotesi che chiavi di sessione scadute siano insicure
 - □ Scaduto: specificatamente, il cui intervallo di validità sia scaduto – esiste temporalità

Autenticazione fra domini

Dominio = realm Kerberos



Figure 4.2 Request for Service in Another Realm

Kerberos in pratica

- Versione IV: ristretta a un singolo realm
- Versione V: funzionamento inter-realm
- Altre differenze: scelta dell'algoritmo di crittografia impossibile in IV (DES); scelta del lifetime impossibile in IV
- Versione V è uno standard di vastissimo utilizzo (specificato in RFC1510)

Usare Kerberos

- Serve un KDC sul proprio dominio
- Tutte le applicazioni partecipanti devono essere servizi Kerberos
- Problema: gli algoritmi crittografici americani non possono essere esportati
 - □ I sorgenti di Kerberos non possono lasciare gli USA
 - □ Il crittosistema va implementato localmente